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a b s t r a c t

We derive the exact equations by which the continuum approximation to the extensional and shear
strains can be determined from measurements of fault-lengths or fault-displacement in a faulted
domain. We develop the theory by which we can infer the extensional and shear strain in a volume of
brittlely deformed crust from an incomplete inventory of the faults. To that end, we use empirical power-
law relationships between fault-length and fault-displacement, and the power-law cumulative frequency
distribution for each of these variables, for sampling domains of one, two, and three dimensions. The
theory 1) defines the relationships among the parameters in these power-laws, which allows the self-
consistency of results from fault-length and fault-displacement studies in domains of one, two, and three
dimensions to be evaluated; 2) defines constraints on the relative sizes of the sampling domain and the
largest fault that can be included in an analysis using fault systematics; 3) shows that extensional and
shear strains in faulted crust can be inferred knowing only an independent set of the parameters defining
the population systematics plus the magnitude of either the displacement or the length for the largest
fault in the domain; and 4) defines the constraints on the three-dimensional strain imposed by sampling
in one- and two-dimensional domains.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The sizes of faults span a tremendous range d so wide a range,
in fact, that no single approach for observation could hope to
achieve a complete inventory. It is observed empirically, however,
that the abundance of faults as a function of fault-length is
described by a power-law relationship, with the frequency of faults
increasing exponentially as their size decreases (e.g., Scholz and
Cowie, 1990; Walsh et al., 1991; Marrett and Allmendinger, 1992;
Cladouhos and Marrett, 1996; Watterson et al., 1996; Marrett
et al., 1999; Bonnet et al., 2001). Moreover, fault-displacement
decreases systematically as fault-length decreases (e.g. Marrett and
Allmendinger, 1991; Clark and Cox, 1996). As a consequence,
although small faults individually contribute less than do large
faults to strain and other bulk physical characteristics of the faulted
volume of rock, their high abundance may compensate for their
small individual contribution.

Power-law distributions of fault sizes provide both obstacles
and opportunities for addressing problems that inherently
3326; fax: þ1 530 752 0951.
s), marrett@mail.utexas.edu
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depend on populations of faults. For example, the magnitude of
deformation due to faulting may depend not just on the largest
faults, but rather on all faults of all sizes contained in a domain of
interest, and available sampling of the faults is commonly insuf-
ficient to provide accurate estimates of the deformation.
However, if data are lacking on the full range of fault sizes, the
phenomenon of fault scaling provides a tool with which we may
quantify statistically the contribution of the unobserved cate-
gories of faults. For current purposes, we limit attention to scaling
of fault-lengths and displacements, as opposed to topological
scaling of fault network geometry (e.g., via box counting; Walsh
and Watterson, 1993). In this contribution we focus on fault-
related strain, but analogous problems include permeability of
fractured rock (recently reviewed by Molz et al., 2004), which can
limit the rate of fluid flow; and fracture surface area, which can
limit the rate of chemical interaction between fluids and rock
(Marrett, 1996).

A review of empirical results pertaining to fault scaling was
published recently (Bonnet et al., 2001), but we have lacked
a complete theory by which these empirical results can be
compared and evaluated. Previous fragments of theoretical work
have been intentionally narrow in order to simplify the analysis,
but this also has limited the scope of applicability and in some cases

mailto:rjtwiss@ucdavis.edu
mailto:marrett@mail.utexas.edu
www.sciencedirect.com/science/journal/01918141
http://www.elsevier.com/locate/jsg
http://dx.doi.org/10.1016/j.jsg.2010.04.007
http://dx.doi.org/10.1016/j.jsg.2010.04.007
http://dx.doi.org/10.1016/j.jsg.2010.04.007


R.J. Twiss, R. Marrett / Journal of Structural Geology 32 (2010) 1960e1977 1961
has led to confusion. For example, Scholz and Cowie (1990) inferred
that small faults contribute negligible strain, but their conclusions
were potentially undercut by having applied fault data sampled in
a two-dimensional domain to a three-dimensional problem
without stereological correction.

In this paper, we begin with first principles and derive a full
and systematic theory for the application of fault scaling relations
to the inference of fault-related extensional and shear strain for
one-, two-, and three-dimensional domains that have been
deformed by a large population of homogeneously distributed
faults. A brief summary of part of this development for extension
in three dimensions was published in Twiss and Moores (2007;
Box 16-I, p. 440). We first derive the equations by which the
continuum approximation of extensional and shear strain in
a domain can be determined from displacements on a set of faults
that deform the domain. We then adopt empirical power-law
equations that relate fault-length to fault-displacement and that
define the cumulative frequency distributions of faults as a func-
tion of each of these two variables. Different equations for
cumulative frequency apply to data sampled in one-, two-, and
three-dimensional domains, and heretofore, the relationships
among these equations have not been clear. We show that the
parameters in these equations are not all independent, and we
derive the relationships among them.

Implicit in the use of fault systematics to determine strain in
a domain is an assumption that the faults are homogeneously
distributed throughout the domain and that the domain is large
relative to the size of the faults. We derive the size constraints that
define, for a given size of domain, the largest fault that can be
included in the analysis, or conversely, the minimum size of the
domain that must be used to incorporate a given maximum-sized
fault in the analysis.

If we know a set of independent parameters that define the fault
systematics in a faulted domain, the theory shows that both
extensional and shear strains can be inferred from either the
displacement on, or length of, the largest fault in the domain.
Heretofore, it has not been clearly recognized that determinations
of strain based on sampling in one- or two-dimensional domains do
not necessarily define the three-dimensional strain exactly;
nevertheless, they at least place constraints on it, and we derive
equations that specify those constraints.

The question, “Are small faults important?” has contradictory
answers in the literature (e.g., Scholz and Cowie, 1990; Walsh et al.,
1991; Marrett and Allmendinger, 1991, 1992), due in part to theo-
retical confusion and in part to semantics. In this paper, small faults
are defined to be one order of magnitude or more smaller than the
largest fault that can be included in the analysis for the domain
under study, without regard to absolute scale (Walsh et al., 1991;
Marrett and Allmendinger, 1992). We derive the relation between
the size of the largest fault and the size of the domain in Section 3.4.
In particular, we do not adopt the definition, used for example by
Scholz and Cowie (1990), that small faults are those that do not
span the brittle crust. Our results show that relatively small faults
contribute significantly to the total strain in a brittlely deformed
volume.

In a companion paper (Twiss and Marrett, in this issue, referred
to as Part II), we use the theoretical results to compare and evaluate
multiple sets of data from the same domains, and we use empirical
data to calculate the extensional strains for these areas and to test
the predictions of the theory. Figure and equation references with
numbers that begin with a “II:” refer to this companion paper.

For ease of reference, all symbols used in the analysis are listed
alphabetically in Table 1, along with a definition and the equation
number of first use and/or occurrence that is relevant to the
definition.
2. Continuum strains of faulted domains

2.1. Infinitesimal continuum extension from brittle faulting

The first problem we address is how to find the continuum
approximation to the extension in a specific direction across
a faulted terrane. We beginwith the result for the calculation of the
average infinitesimal constant volume strain tensor that results
from the slip on a set of non-rotating faults within a volume V of
rock, where V is large relative to the dimension of the largest fault
contained in the volume. The strain of a volume V that is contrib-
uted by a single fault completely contained within the volume, is
(Kostrov (1974), referencing Riznichenko (1965); see also Twiss
(2009)).

ekl ¼
1
2V

M0½hknl þ hlnk�; (2.1.1)

where hk and nk are the components of unit vectors parallel,
respectively, to the slip direction and the normal to the fault (Fig. 1).
The slip direction is defined by the motion of the fault block into
which n points.

In Eq. (2.1.1), M0 is the geometric moment defined by

M0 ¼ Ad; (2.1.2)

where A is the area of the fault over which the slip occurs, and
d is the mean of the displacement magnitudes over the fault
surface. The geometric moment is similar to the scalar seismic
moment except that the shear modulus, which is part of the
definition of the seismic moment, is not included in the
geometric moment. Twiss and coworkers have used continuum
micropolar theory to account for the effects of rotating fault
blocks on the slip directions and the geometric moment tensor
(Twiss et al., 1991, 1993; Twiss, 2009), but we ignore those effects
in this analysis.

Note that if d is the displacement vector for the block into which
n points, and if the magnitude of the displacement is d, then

hh
d

jdj ¼
d

d
; d ¼ dh: (2.1.3)

The extension in the direction parallel to the unit vector t (Fig. 1) is
determined from the strain tensor by

eð3;tÞ ¼ ekltktl; (2.1.4)

where, the subscript ‘(3,t)’ on the symbol for the extension indi-
cates that this expression applies to the extension of the three-
dimensional domain V parallel to the unit vector t. We adopt the
Einstein summation convention for repeated subscripts in any
given term. We define the angle f to be the angle between the slip
direction h on the fault and the traverse direction t, and q to be the
angle between the normal to the fault plane n and the traverse
direction t (Fig. 1) so that

hktk ¼ cos f; nktk ¼ cos q; (2.1.5)

Then we substitute for the strain tensor in Eq. (2.1.4) using
Eqs. (2.1.1), (2.1.2), and (2.1.5), andwrite the result for the ith fault in
a set of N(max) faults,

eðiÞð3;tÞ ¼ AðiÞ cos qðiÞdðiÞ cos fðiÞ

V
: (2.1.6)

This equation gives the volumetric average of the extension in the
direction t contributed by the ith fault in the volume V . We can
rewrite Eq. (2.1.6) in the form



Table 1
Notation.

Symbol Definition or description Eq. no. for definition or first use

A, A(i), At
(i) - Area of a fault, or of the ith fault, over which the displacement occurs;

subscript ‘t’ indicates the projection of the area on a plane normal to t.
(2.1.2), (2.1.6), (2.1.13), (2.4.3)

A, At ¼ WH , Aw ¼ T H , Ah ¼ T W - Cross-sectional area of the volume V ; subscripts indicate orientation of
the area normal to the unit vector t, w, or h, respectively

(2.1.7), (2.1.9)

B - Constant in the fault-lengthefault-displacement relationship. 1/B
defines the displacement on faults of unit length in any specific area.
Dimensions of [length](p�1)

(3.1.1)

C(z,v): z¼ 1, 2, 3; v¼ t, th - Constants of integration. (4.1.27)e(4.1.29), (4.1.32)e(4.1.34),
(S1.2.2), (S1.2.6), (S2.3.2), (S2.3.7),
(S3.4.2), (S3.4.7)

D(z,x): z¼ 1, 2, 3; x¼ t, g - A combination of constants in the equations for extension of material
lines parallel to t (x¼ t), or shear strain of material lines parallel to t and
w (x¼ g) for a z-dimensional domain.

(4.1.11), (4.1.12), (4.1.14), (4.1.15)

ekl - Strain tensor contributed by displacement on a single fault, averaged
over a faulted domain V , the dimensions of which are large relative to
the fault.

(2.1.1)

e(z,x), e(z,x)
(i) , e

(z,x)
(cum), e

(z,x)
(tot), e

(z,gv)
(i) : z¼ 1, 2, 3;

x¼ t, g; v¼ t, w

- Extensional strain of in a z-dimensional domain parallel to either t
(x¼ t) orw (x¼w), or shear strain in a z-dimensional domain of the pair
of orthogonal lines parallel to t and w (x¼ g); no superscript refers to
the total strain from one or more faults; superscript (i) indicates strain
contributed by the ith fault; superscripts ‘(cum)’, and ‘(tot)’ indicate,
respectively, the cumulative strain, and the total strain. The subscript
‘gv’ is the part of the shear strain for the line segment parallel to t (orw)
(v¼ t (or w)) relative to w (or t).

(2.1.4), (2.1.6), (2.1.12), (2.2.1), (2.2.4),
(2.2.7), (4.1.1)e(4.1.6), (4.1.23)e
(4.1.26), (4.1.36)e(4.1.39), (4.1.40)e
(4.1.42)

f(z,v)(L), f(z,v)(d): z¼ 1, 2, 3; v¼ t, w, th - Cumulative frequency of faults having length �L, or displacement �d,
as determined by the sampling of a z-dimensional domain. Subscript v
indicates the orientation of the sampling domain (omitted when z¼ 3).

(3.1.4), (3.1.5), (3.1.8), (3.1.11), (3.1.13)

G(z,v): z¼ 1, 2, 3; v¼ t, w, th - Constant relating the cumulative number of faults to the fault-length;
equals the cumulative number of faults having a unit length. When
z¼ 3, the subscript v is omitted. Units of ½ðkmÞmz �

(3.1.3), (3.1.5)

g(z,v): z¼ 1, 2, 3; v¼ t, w, th - Constant relating the cumulative frequency of faults to the fault-
length; equals the cumulative frequency of faults having a unit length.
When z¼ 3, the subscript v is omitted. Units of ½ðkmÞmz =ðkmÞ2�

(3.1.4), (3.1.5)

H , H 0 - Vertical dimension of the sampling volume V , parallel to the unit
vector h, in the deformed and undeformed state, respectively.

(2.1.8), (2.1.9), (2.4.3), Fig. 2

h, hk, th - Vertical unit vector, and its components, oriented perpendicular to t
andw.th is used as a subscript (v¼th) to indicate a horizontal planar
domain oriented perpendicular to h.

Fig. 2, (3.1.6)

i - Superscript referring to the ith fault, for faults numbered from
i¼ 1:N(max) in order of decreasing length or displacement.

(2.1.6)

K(1,v): v¼ t, w - Constants of integration for the cumulative shear strain determined by
sampling along two orthogonal lines parallel, respectively, to t and w

(4.1.30), (4.1.35)

L, L(i) - Horizontal dimension of a fault, or of the ith fault, as measured in the
sampling domain.

(2.1.13), (3.1.1)

l, l(i) - The down-dip width of a fault, or of the ith fault (2.1.14), (3.1.21)
M0 - The geometric moment for slip on a fault (2.1.1), (2.1.2)
mz - Exponent on the fault-length in the power-law relation between

cumulative number or cumulative frequency and fault-length, as
determined by sampling of a z-dimensional domain.

(3.1.3)

N(z,v)(L), N(z,v)(d), N(z,v): z¼ 1, 2, 3; v¼ t,
w, th

- Cumulative number of faults having length �L, or displacement �d, as
determined by sampling of a z-dimensional domain oriented as
indicated by v. When z¼ 3, v is not included in the subscript.

(3.1.3), (3.1.7), (3.1.15)

N(max) - Total number of faults in a volume V . (2.1.12)
n, nk - Unit vector and its components normal to a fault surface. (2.1.1)

z
PðiÞ
v : z¼ 1, 2, 3; v¼ t, w, th - The probability that in a z-dimensional domain (left subscript), the ith

fault (superscript) is intersected by a random line parallel to t orw (v¼ t
or w) or a plane perpendicular to h (v¼th) (right subscript).

(2.1.10), (2.2.5), (3.1.19), (3.1.20),
(3.1.22), (3.1.29)1,2, (4.1.1), (4.1.6),
(4.1.7), (4.1.9)

z
Pv: z¼ 1, 2, 3; v¼ t, w, th - Continuous function (of length or displacement) defining the

probability that a fault of a given length or displacement in a z-
dimensional domain (left subscript) will be intersected by a randomly
located lower-dimensional domain having an orientation v (right
subscript); v¼ t for one-dimensional domains parallel to t, or v¼th for
a two-dimensional domain perpendicular to h.

(3.1.15), (3.1.23), (3.1.24), (3.1.29)3,4

3pv: v¼ t, w, th - Continuous function defined as the product of the probability 3Pv and
the volume associated with a unit size of the domain (V =T for v¼ t;
V =Ah for v¼th).

(3.1.16)e(3.1.18), (3.1.25), (3.1.26),
(3.1.30)

p - Exponent on the length in the relationship between fault-length and
fault-displacement.

(3.1.1)

R(z,v): z¼ 1, 2, 3; v¼ t, w, th - Constant in the equation relating the cumulative number of faults to
the displacement on the faults; equals the cumulative number of faults
on which the displacement is of unit length. Subscript ‘z’ indicates
dimension of the sampling domain; subscript ‘v’ indicates orientation of
sampling domain (omitted when z¼ 3). Units of ½ðlengthÞsz �.

(3.1.9)2,3, (3.1.10), (3.1.12)
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Table 1 (continued )

Symbol Definition or description Eq. no. for definition or first use

r(z,v): z¼ 1, 2, 3; v¼ t, w, th - Constant in the equation relating the cumulative frequency of faults
and the displacement on the faults; equals the cumulative frequency of
faults on which the displacement is of unit length. Subscript ‘z’ indicates
dimension of the sampling domain; subscript ‘v’ indicates orientation of
sampling domain (omitted when z¼ 3). Units of ½ðlengthÞsz =ðlengthÞz�.

(3.1.9)3, (3.1.11), (3.1.12)

sz - Exponent on the displacement in the power-law relation between
cumulative number or cumulative frequency and fault-displacement, as
determined by sampling of a z-dimensional domain.

(3.1.9)1, (3.1.10), (3.1.11)

T , T 0 - The deformed and undeformed lengths of the horizontal material line
that is the dimension of the volume V parallel to t. They are
approximately equal in the infinitesimal strain approximation.

(2.1.8), (2.1.9), (2.1.11)

DT ðiÞ
v : v¼ t, w - Displacement in the direction t orw (v¼ t or w) contributed by the ith

fault intersected by the sampling line parallel to t or w.
(2.3.1), (S3.3.2), (S3.3.3)1,3

t, tk - Horizontal unit vector, and its components, parallel to the traverse
direction in which the extension or shear strain is determined (normal
to the unit vector w)

(2.1.4)

Uk - Continuum displacement vector components. (S3.3.1)
V , V 0 - The deformed and undeformed volume of rock for which the strain is

determined, having deformed or undeformed dimensions, respectively,
of [length, width, height]¼ ½T ;W ;H � or ½T 0;W 0;H 0�.

(2.1.1), (2.1.8)

v - As a subscript, it stands for subscripts that define the orientation of
a domain, e.g. v¼ t or w for lines parallel to t or w; or v¼th for
horizontal planes normal to h.
In the companion paper, Part II, it represents the maximum throw on
a fault (the vertical component of the displacement).

(3.1.3), (3.1.4), (II:2.6)

W , W 0 - The deformed and undeformed length of a horizontal material line that
is the dimension of the volume V parallel tow and normal to t. They are
approximately equal in the infinitesimal strain approximation.

(2.1.8), (2.1.9), (2.4.3)

DW ðiÞ
t - The displacement parallel to w due to slip on the ith fault intersected

by the sampling line parallel to t.
(S3.3.2), (S3.3.3)2

w, wk - Horizontal unit vector, and its components, perpendicular to both t
and h.

(2.2.1), Fig. 1

x - Subscript that stands for both t and g; used as a condensed notation in
equations that have the same form for both extensional and shear strain.

(4.1.11), (4.1.12)

a(i), a - Angle between the direction w (which is normal to the horizontal line
t) and the fault plane normal n; superscript ‘(i)’ indicates the ith fault; no
superscript applies to all faults assumed to have the same orientation.

(2.2.2), (2.2.3), (2.1.16), Fig. 1A

b(i), b - Angle between the horizontal direction w (which is normal to the
horizontal line t) and the fault-slip direction h; superscript ‘(i)’ indicates
the ith fault; no superscript applies to all faults assumed to have the
same orientations of fault plane and slip direction.

(2.2.2), (2.2.3), (2.1.16), Fig. 1A

D(z,v): z¼ 1, 2, 3; v¼ t, w, th - The size of the z-dimensional sampling domain; for z¼ 3, it is the
volume V of the domain; for z¼ 2, it is the area Ah ¼ T W of a horizontal
plane through that volume; for z¼ 1, it is the length T or W of
a horizontal traverse across that volume; subscript v indicates the
orientation of the sampling domain parallel to t, w, or normal to h (not
used for z¼ 3).

(3.1.5), (3.1.6)

d - Fault-displacement vector (which is parallel to the unit vector h). (2.1.3)
d, d(i),d

(z,v)
(max): z¼ 1, 2, 3; v¼ t, w, th - Magnitude of the mean displacement on a fault (superscript (i)

indicates the ith fault). When i¼ 1, the displacement is for the largest-
displacement fault in the z-dimensional sampling domain (superscript
‘(max)’); v indicates the orientation of the domain parallel to the unit
vectors t or w (v¼ t or w) or perpendicular to h (v¼th).

(2.1.2), (2.1.3), (2.1.6), (3.3.1)e(3.3.4),
(4.1.31),

3(i), 3 - The angle between x (which is the orthogonal projection onto
a horizontal plane of the unit normal n to a fault) and the unit vector w.
The angle lies in the horizontal plane that is normal to h; superscript ‘(i)’
indicates the ith fault; no superscript applies to all faults assumed to
have the same orientation.

Fig. 1B (2.1.16), (S2.1.8)2,

f(i), f - Angle between the horizontal direction t and the slip direction h on
a fault; superscript ‘(i)’ indicates the ith fault; no superscript applies to
all faults, assumed to have the same fault and slip orientations.

Fig. 1A (2.1.5), (2.1.6), (2.1.16),

g - Subscript used to imply shear strain of material lines that are parallel
to the orthogonal unit vectors t and w.

(2.2.1)

h, hk - Unit vector and its components parallel to the fault-displacement for
the fault-block into which the fault-normal n points.

(2.1.1), (2.1.3)

k(i), k - The angle between x (which is the orthogonal projection onto
a horizontal plane of the unit normal n to a fault) and the unit vector t.
The angle lies in the horizontal plane normal to h; superscript ‘(i)’
indicates the ith fault; no superscript applies to all faults, assumed to
have the same orientation.

Fig. 1B (2.1.16), (S2.1.8)1,

l(i), l - Geometrical shape factor for a fault that accounts for the ratio of the
down-dip width to the length, and for the shape of the fault tip line;
superscript ‘(i)’ indicates the ith fault; no superscript applies to all faults,
assumed to have the same geometry.

(2.1.13), (2.1.14), (S2.2.8)

(continued on next page)
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Table 1 (continued )

Symbol Definition or description Eq. no. for definition or first use

m(i), m The ratio of the down-dip width l of a fault to its length L; superscript
‘(i)’ indicates the ith fault; no superscript applies to all faults, assumed to
have the same geometry.

(3.1.20), (3.1.21), (S2.2.8)

n(i), n - The ratio of the average length of the fault trace on random horizontal
planes, to the maximum length of the fault parallel to the plane. It
accounts for the effect of the shape of the fault tip line on the length of
the fault trace on a horizontal plane. Superscript ‘(i)’ indicates the ith
fault; no superscript applies to all faults, assumed to have the same
geometry.

(4.1.10), (2.1.16), (S2.1.18), (S2.2.8)

r(i), r - The dip of a fault; superscript ‘(i)’ indicates the ith fault; no superscript
applies to all faults, assumed to have the same orientation.

Fig. 1B, (3.1.20), (2.1.16)

q(i), q - Angle between the normal n to a fault plane, and the direction t;
superscript ‘(i)’ indicates the ith fault; no superscript applies to all faults,
assumed to have the same orientation.

Fig. 1A, (2.1.5)2, (2.1.6), (2.1.16)

x(i), xk
(i) - The normal to the trace of the ith fault within the horizontal two-

dimensional sampling domain that is perpendicular to h; it is the
orthogonal projection of the fault normal n(i) onto the sampling domain.
Not a unit vector.

Fig. 1B, (S2.1.5), (S2.1.7)

j - Shear angle; tensor shear strain¼ 0.5 tan j Fig. 2B, (2.4.2)
z - Subscript indicating the number of spatial dimensions in a sampling

domain.
(3.1.3), (3.1.4)

Symbols used in the paper are listed alphabetically, first for the Roman alphabet, then for the Greek alphabet.
Equation numbers beginning with “S” refer to the Supplementary Material available on line.

Fig. 1. Geometry for the fault-slip analysis showing three parallel fault planes of
different sizes cutting the volume. Vectors and angles used in the analysis are illus-
trated. A. n is the unit normal to the fault plane, and it points into the fault block whose
displacement direction is parallel to the unit vector h. The direction in which we
determine the extension is parallel to the unit vector t, and the direction relative to
which material lines parallel to t are sheared is defined by the unit vector w, which is
orthogonal to t. B. n, t, andw are the same as in part A. h is a unit vector that is vertical
pointing down. x is a vector that is the projection of n onto the horizontal surface. It is
not a unit vector.
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eðiÞð3;tÞ ¼
"
AðiÞ cos qðiÞ

At

#"
dðiÞ cos fðiÞ

T

#
; (2.1.7)

where we define the linear dimensions of the specified volume
after deformation to be V , W , and H , which are parallel, respec-
tively, to the orthogonal triad of unit vectors t, w, and h. Westaway
(1994) also used Kostrov’s results as a starting point for his analysis
but did not use Eq. (2.1.4) and thus found a different result from Eq.
(2.1.6). For convenience, we consider t andw to be horizontal and h
to be vertical, although those orientations are not required. We
define the cross-sectional areas of V normal to those unit vectors as
follows (Fig. 2A):

VhT W H ; (2.1.8)

Ath
V

T
¼ WH ; Awh

V

W
¼ T H ; Ahh

V

H
¼ T W : (2.1.9)

In Eq. (2.1.7), the first term in brackets is the ratio of the fault
area projected onto a plane normal to t, to the cross-sectional area
of the averaging volume V , where the cross section is also normal
to t (Eq. (2.1.9)1). This ratio, therefore, is just the probability 3P

ðiÞ
t

that in a three-dimensional domain V (left subscript), the ith fault
(superscript) is intersected by a random line parallel to t (right
subscript),

3P
ðiÞ
t h

AðiÞ cos qðiÞ

V =T
¼ AðiÞ cos qðiÞ

At
: (2.1.10)

The second term in brackets in Eq. (2.1.7) is the component of the
slip in the direction of the sampling line, divided by the length T of
that line. If we make the infinitesimal strain assumption that the
deformed and undeformed lengths of the sampling line are the
same, to a first order approximation, then

TzT 0; (2.1.11)

and this term is just the local extension parallel to t due to slip on
the ith fault. Thus, Eq. (2.1.7) shows that the contribution of the ith
fault to the total extension parallel to t of the volume V is just the
ith local extension in that direction (second term in Eq. (2.1.7))
scaled by the size (area) of the ith fault relative to the cross-



Fig. 2. Examples of strain components for blocks cut by simple sets of faults. A.
Extension of a block of length T , height H 0, and width W 0 cut by a pair of conjugate
normal faults. n(i) (i¼ 1, 2) are unit vectors normal to the two fault planes, and t is
a unit vector parallel to the direction in which the extension is determined. d(i) (i¼ 1, 2)
are the displacement vectors on the two fault planes; they are parallel to the unit
vectors h(i) (i¼ 1, 2). B. Shear strain of a line parallel to t relative to a line parallel to w
in a block of height T 0, width W 0, and thickness H 0 normal to the diagram (not
shown). The block is cut by two parallel strike-slip faults. Vectors are defined as in Part
A. d(i)¼ jd(i)j is the magnitude of the displacement vector.
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sectional area of the volume, and by its orientation relative to t (first
term in Eq. (2.1.7)); this scaling factor is just the probability defined
in Eq. (2.1.10).

The total continuum extension of the volume V is just the sum
over allN(max) faults in the volume, of theweighted local extensions
contributed by each fault in the system,

eðtotÞð3;tÞ ¼
XNðmaxÞ

i¼1

eðiÞð3;tÞ ¼
XNðmaxÞ

i¼1

AðiÞdðiÞ

V
cos qðiÞ cos fðiÞ: (2.1.12)

For this summation, we assume the faults are ordered by
displacement from the largest, for which i¼ 1, down to the small-
est, for which i¼N(max), so that if we sum over i¼ 1:N faults, where
N<N(max), we obtain the cumulative contribution to the extension
by the N largest faults in the volume.

We want to be able to sum the contributions from many faults,
none of which in general, has dimensions comparable to the
dimensions of the volume over which we are averaging. Thus the
dimensions of the fault areas A(i) and the dimensions of the volume
V do not, in general, cancel out. If, however, we analyze a situation
in which one or more faults cut completely through the volume V ,
then the fault area, projected onto a plane normal to t andwithin V ,
is identical to the cross-sectional area of V as measured on the
plane normal to t. Therefore the numerator and denominator of
Eq. (2.1.10) are equal, and the probability is exactly 1 that a random
line parallel to t through the volume will intersect the fault (see
Fig. 2A and Eq. (2.3.5) for an example).
We can write the fault area A(i) in Eq. (2.1.12) in terms of the
horizontal length L(i) of the fault, as follows:

AðiÞ ¼
�
lðiÞLðiÞ

�
LðiÞ ¼ lðiÞ

�
LðiÞ
�2

; lðiÞh
AðiÞ�
LðiÞ
�2; (2.1.13)

where l(i) is a geometrical constant that accounts for the difference
between the horizontal length and down-dip width of the fault as
well as for the shape of the fault. For example, if the fault is rect-
angular in shape with horizontal length L(i) and down-dip width l(i),
or if it is elliptical in shape with a horizontal major-axis length L(i)

and a down-dip minor-axis length l(i) then, respectively,

lðiÞ ¼ 1
lðiÞ

LðiÞ
or lðiÞ ¼ p

4
lðiÞ

LðiÞ
: (2.1.14)

If we wish to average the effects of multiple faults in a volume, the
dimensions of the volume V over which we are averaging
(Eq. (2.1.8)) must be large relative to the dimensions of the largest
fault, although the actual depth to which the volume extends is
limited by the thickness of the brittle crust. In Section 3 we will be
able to be more specific about what ‘large’ means in this context
(see Eqs. (3.4.2)e(3.4.4) and Part II, Section 3).

Substituting Eqs. (2.1.13)1 into Eqs. (2.1.6) and (2.1.10) gives,

eðiÞð3;tÞ ¼
lðiÞ
�
LðiÞ
�2

V
cos qðiÞdðiÞ cos fðiÞ;

3P
ðiÞ
t ¼

lðiÞ
�
LðiÞ
�2

cos qðiÞ

At
;

eðiÞð3;tÞ ¼ 3P
ðiÞ
t
dðiÞ cos fðiÞ

T
:

9=
; (2.1.15)

We pursue this analysis for a simple case, for which we assume
all the faults, regardless of size, have a similar shape and orienta-
tion, so the geometrical factor l and fault-orientation angle q are
the same for all faults; all the displacements have a similar orien-
tation, so the angle f is the same for all of the faults; and the fault
population is homogeneously distributed throughout the volume.
Faults with conjugate orientations easily can be included in the
analysis (see for example Section 2.3, Eq. (2.3.5)), but for simplicity
we consider only faults having the same orientation. For the
convenience of future reference to one equation, we include in this
definition of the simple case, angles a(i), b(i), r(i), k(i), and 3(i) (see
Fig. 1 and Eqs. (2.2.2), (3.1.20), and (S2.1.8)), and geometric
parameters m(i) and n(i) that are defined later in the paper (see Eqs.
(3.1.21) and (4.1.10)).

For all i :
qðiÞ ¼ q; fðiÞ ¼ f; aðiÞ ¼ a; bðiÞ ¼ b;
rðiÞ ¼ r; kðiÞ ¼ k; 3ðiÞ ¼ 3;

lðiÞ ¼ l; mðiÞ ¼ m; nðiÞ ¼ n:

(2.1.16)

With these simplifications, the contribution of the ith fault to the
total extension of the volume V parallel to t can be written from Eq.
(2.1.15)1

eðiÞð3;tÞ ¼
l
�
LðiÞ
�2

V
dðiÞcos q cos f; (2.1.17)

and the total volume-averaged continuum extension parallel to t,
following Eq. (2.1.12), is therefore the sum of the weighted local
extensions (Eq. (2.1.17)) from all the faults in the volume,

eðtotÞð3;tÞ ¼
XNðmaxÞ

i¼1

eðiÞð3;tÞ ¼ l cos q cos f
V

XNðmaxÞ

i¼1

�
LðiÞ
�2

dðiÞ: (2.1.18)



R.J. Twiss, R. Marrett / Journal of Structural Geology 32 (2010) 1960e19771966
2.2. Infinitesimal continuum shear strain from brittle faulting

The second problem we address is how to find the continuum
shear strain from a distributed brittle deformation. We apply an
analysis similar to that used in the preceding section (Section 2.1).
The continuum tensor shear strain of a line parallel to the unit
vector t, relative to an initially orthogonal line parallel to the unit
vector w (Fig. 1), is obtained from the strain tensor by

eð3;gÞ ¼ ekltkwl; (2.2.1)

where the subscript ‘3’ identifies the strain as applying to the three-
dimensional volumeV , and the subscriptg indicates the strain is the
shear strain of a pair of initially orthogonal material lines parallel to
t andw. We define a to be the angle between the normal to the fault
plane, n, and the direction w, and b to be the angle between the
fault-slip direction h and the direction w (Fig. 1A), whereby,

nlwl ¼ cos a; hlwl ¼ cos b: (2.2.2)

Substituting for the strain tensor in Eq. (2.2.1) from Eq. (2.1.1) with
(2.1.2), and using Eqs. (2.2.2), gives for the ith fault in a set of N(max)

faults (see Fig. 2),

eðiÞð3;gÞ ¼ AðiÞdðiÞ

V

1
2

h
cos fðiÞ cos aðiÞ þ cos qðiÞ cos bðiÞ

i
; (2.2.3)

Using Eq. (2.1.8), we can rewrite Eq. (2.2.3) as

eðiÞð3;gÞ ¼ 1
2

("
AðiÞ cos qðiÞ

ðV =T Þ

#"
dðiÞ cos bðiÞ

T

#
þ
"
AðiÞ cos aðiÞ

ðV =W Þ

#

�
"
dðiÞ cos fðiÞ

W

#)
: (2.2.4)

Within thebraces {.} is the sumof twoterms,eachwith two factors.
In the first term, the first factor in brackets [.] is aweighting that is
the probability that a random line through the volumeV parallel to t
intersects the ith fault (Eq. (2.1.10)); and the second factor inbrackets
is the local shear strain of the line T due to the component of slip on
the fault in the direction w perpendicular to t. The second term is
similar, except the first factor is the probability that a random line
parallel tow through the volume V intersects the ith fault,

3P
ðiÞ
w ¼ AðiÞ cos aðiÞ

ðV =W Þ ¼ AðiÞ cos aðiÞ

Aw
; (2.2.5)

and the second factor is the local shear strain of the line W due to
the component of slip on the fault in the direction t perpendicular
to w. Thus, substituting Eqs. (2.1.10) and (2.2.5) into (2.2.4) gives:

eðiÞð3;gÞ ¼ 1
2

(
3P

ðiÞ
t

"
dðiÞ cos bðiÞ

T

#
þ 3P

ðiÞ
w

"
dðiÞ cos fðiÞ

W

#)
: (2.2.6)

This equation says that half the sum of these shear terms is the
symmetric continuum shear strain for material lines parallel to t
relative to material lines parallel tow. If the fault plane is parallel to
w, then a¼ 90�, 3P

ðiÞ
w ¼ 0, and the second term is zero.

We use Eq. (2.1.13)2 in Eq. (2.2.3), and sum the result over all
N(max) faults in the volume V to find the total tensor shear strain of
the volume,

eðtotÞð3;gÞ ¼
XNðmaxÞ

i¼1

eðiÞð3;gÞ

¼
XNðmaxÞ

i¼1

lðiÞ
�
LðiÞ
�2

dðiÞ

2V

h
cosqðiÞcosbðiÞþcosfðiÞcosaðiÞ

i
: ð2:2:7Þ
As in Eq. (2.1.12), we assume the faults are numbered i¼ 1:N(max) in
order of decreasing displacement magnitude. Thus a partial sum
over N<N(max) faults gives the cumulative contribution to the
shear strain of the N faults that have the largest displacements in
the volume.

For our analysis of a simple special case, we assume the condi-
tions in Eq. (2.1.16), which require that all faults have the same
shape and orientation, and that the slip directions all have the same
orientation. These assumptions, with Equation (2.1.13)2, simplify
Eq. (2.2.3) to

eðiÞð3;gÞ ¼
l
�
LðiÞ
�2

dðiÞ

V

1
2
½cos q cos bþ cos f cos a�: (2.2.8)

The expression for the total tensor shear strain of the volume V
(Eq. (2.2.7)) becomes

eðtotÞð3;gÞ ¼
XNðmaxÞ

i¼1

eðiÞð3;gÞ ¼
l

2V
½cosqcosbþcosfcosa�

XNðmaxÞ

i¼1

�
LðiÞ
�2

dðiÞ:

(2.2.9)
2.3. Simple example of extensional strain

We can apply Eq. (2.1.12) to a simple example comparable to that
used by Peacock and Sanderson (1993). Fig. 2A shows a block cut by
two conjugate normal faults, each dipping at 60� with down-dip
displacement of d¼ 1 m. From inspection, the extension of a hori-
zontal line parallel to the front face of the block is

eðtotÞð3;tÞ ¼
X2
i¼1

DT ðiÞ
t

T 0
¼ 0:5

100
þ 0:5
100

¼ 0:01: (2.3.1)

For comparison with Eq. (2.3.1), we apply Eq. (2.1.12) to the calcu-
lation. The area of the ith fault plane is the down-dip width of the
plane times the length parallel to strike. For this example, therefore,
we have from Fig. 2A,

AðiÞ ¼ H 0

jcos qðiÞj
W 0; V ¼ T 0W 0H 0; (2.3.2)

T 0zT ¼ 100 m; dðiÞ ¼ 1 m; (2.3.3)

qð1Þ ¼:
�
nð1Þ;t

�
¼ 30�; qð2Þ ¼:

�
nð2Þ;t

�
¼ 150�;

fð1Þ ¼:
�
dð1Þ;t

�
¼ 60�; fð2Þ ¼:

�
dð2Þ;t

�
¼ 120�;

(2.3.4)

where Eq. (2.3.3)1 is the infinitesimal strain approximation from
Eq. (2.1.11), and the displacement vector d(i) is defined in Eq. (2.1.3)2.
Eq. (2.1.12) with Eqs. (2.3.2) then gives,

eðtotÞð3;tÞ ¼
X2
i¼1

sgn
�
cosqðiÞ

�dðiÞ cosfðiÞ

T
; sgn

�
cosqðiÞ

�
h

cosqðiÞ

jcosqðiÞj
¼�1:

(2.3.5)

The function sgn(cos q(i)) accounts for the conjugate orientations of
the faults in this example (Fig. 2A; Eq. (2.3.4)). In this case, the
weighting term in Eq. (2.1.7), which is defined as 3P

ðiÞ
t in Eq. (2.1.10),

is equal to 1, which is consistent with our discussion above, because
the faults in this example cut completely through the volume
(Fig. 2A). Eq. (2.3.5)1 then gives,

eðtotÞð3;tÞ ¼ ðþ1Þð1Þcos60
�

100
þð�1Þð1Þcos120

�

100
¼ ð0:5Þ

100
þð0:5Þ

100
¼ 0:01:

(2.3.6)
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Thus Eq. (2.1.12) gives the anticipated answer for this simple
example.

2.4. Simple example of shear strain

We apply the equations for the shear strain in a volume, to the
simple example in Fig. 2B, where the slip on each of the two faults is
assumed to be d¼ 1 m, and the dimensions of each fault block are
100 m by 50 m. From inspection, we can see that the tensor shear
strain averaged over the shear zone is,

eðtotÞð3;gÞ ¼ 1
2

X2
i¼1

dðiÞ

T 0
¼ 1

2

�
1

100
þ 1
100

�
¼ 0:01; (2.4.1)

and the shear angle j is given by,

j ¼ tan�1 2
100

¼ 1:15� ¼ 0:02 rad: (2.4.2)

For comparison with this calculation, we apply Eq. (2.2.7).
Assuming the thickness of the blocks normal to the diagram is H 0
m, we have

LðiÞ ¼ W 0; lðiÞ ¼ H 0=W 0;

AðiÞ
t ¼ W 0H 0; V 0 ¼ T 0W 0H 0;

)
(2.4.3)

T 0 ¼ 100 m; W 0 ¼ 100 m; dðiÞ ¼ 1 m; (2.4.4)

qðiÞ ¼:
�
nðiÞ;t

�
¼ 0�; aðiÞ ¼:

�
nðiÞ;w

�
¼ 90�;

fðiÞ ¼:
�
hðiÞ;t

�
¼ 90�; bðiÞ ¼:

�
hðiÞ;w

�
¼ 0�;

)
(2.4.5)

whereby Eq. (2.2.7) gives

eðtotÞð3;gÞ ¼
1

2$100
½2ðcos0�cos0� þcos90�cos90�Þ� ¼ 0:01: (2.4.6)

Thus the shear strain given by Eq. (2.2.7) gives the result antici-
pated from the direct calculation from Fig. 2B. Eq. (2.1.10) with
Eq. (2.1.11) and the values given in Eqs. (2.4.3)e(2.4.5) show that the
probability 3P

ðiÞ
t is 1 that a horizontal sampling line normal to the

strike of the faults cuts both faults, as required by the fact that
the faults both cut through the entire volume. For the geometry of
this example, the probability 3P

ðiÞ
w is zero, as shown by Eq. (2.2.5)

with Eqs. (2.4.3)e(2.4.5).

3. Fault population systematics for sampling domains of
different dimensionality

3.1. Equations describing fault systematics

Eqs. (2.1.18) or (2.2.9) imply that we need to measure the
displacements on all the faults of all sizes within the volume V .
Such a measurement, however, is impossible because we can never
sample the interior of a volume completely. Even if mine tunnels or
drill core is available, they provide only partial sampling of the
volume, and seismic profiles are of limited resolution. Moreover,
given the usual incomplete exposure in outcrop, the measurement
of displacements on all the faults along a linear traverse is in
general also impossible. It is not even apparent that we could make
a meaningful estimate of the extension by measuring only the
largest faults, because although smaller faults have smaller
displacements, the number of faults increases rapidly as the size of
the faults decreases.
To overcome these problems, we can use the scaling relations
for fault-length and fault-displacement to estimate the total
extension or shear strain without having to measure all faults.
Empirically, the displacement on a fault is related to the length of
the fault by a power-law (e.g. Clark and Cox, 1996; Kim and
Sanderson, 2005) (see the companion paper Part II, Fig. II:1):

Lp ¼ Bd or p log L ¼ log Bþ log d; (3.1.1)

d ¼ 1
B
Lp or log d ¼ �log Bþ p log L; (3.1.2)

where d represents the mean of the displacement distribution
across the area of a fault. The constant 1/B defines the displacement
on faults that have unit length in any specific area.

Numerous studies (e.g. Cladouhos and Marrett, 1996; Watterson
et al., 1996) also have shown a power-law distribution for the
cumulative number N(L) or the cumulative frequency f(L) of faults
as a function of fault-length. Here, N(L) and f(L) define the cumu-
lative number and frequency, respectively, of faults that have
a length greater than or equal to L. The cumulative frequency is
defined to be the cumulative number of faults per unit size of the
sampling domain. These power-law relations are given by,

Nðz;vÞðLÞ ¼ Gðz;vÞL
�mz ; logNðz;vÞðLÞ ¼ logGðz;vÞ �mz logL; (3.1.3)

fðz;vÞðLÞ ¼ gðz;vÞL
�mz ; log fðz;vÞðLÞ ¼ loggðz;vÞ �mz logL: (3.1.4)

In these equations, the Greek subscript z is used to indicate the
dimensionality of the domain in which the sampling of the faults
is done, accounting for the fact that different relations are derived
from the sampling of faults in the volume (z¼ 3), on a two-
dimensional surface (z¼ 2), or along a linear transect (z¼ 1)
(although measuring the length of a fault intersected by linear
transect implies some access to at least one other dimension). In
the subscript ‘(z,v)’, the ‘v’ indicates the orientation of the
sampling domain. In this development, ‘v’ can stand for ‘t’, ‘w’, or
‘th’, indicating respectively linear domains parallel to t or tow, or
planar domains perpendicular to h. If z¼ 3, the sampling domain
is the entire volume V , and the subscript ‘v’ is not needed. The
constants G(z,v) and g(z,v) are the cumulative number and the
cumulative frequency, respectively, of faults having a length
greater than or equal to 1, in the prevailing units used for the
measurements. Thus these parameters calibrate the fracture
intensity, which is specific to individual regions of fracturing, and
also to specific orientations of one- and two-dimensional sampling
domains.

The cumulative functions and the parameters in the two Eqs.
(3.1.3) and (3.1.4) are related respectively by,

fðz;vÞðLÞhNðz;vÞðLÞ=Dðz;vÞ; gðz;vÞhGðz;vÞ=Dðz;vÞ; (3.1.5)

where D(z,v) is the size of the z-dimensional sampling domain, as
defined by (Fig. 2A),

Dð3ÞhV ¼ T WH ; Dð2;thÞhAh ¼ T W ; Dð1;vÞh
�

T for v¼ t
W for v¼w

�
;

(3.1.6)

and where T (orW ) is the length of the horizontal dimension of the
volume V parallel to the unit vector t (or w), the choice depending
on the orientation of the specific line under consideration, and Ah is
a horizontal (map) area normal to the vertical unit vector h, which
is parallel to the dimension H of the volume V (see the companion
paper, Part II, Fig. II:2B and II:4B for data sets illustrating, respec-
tively, Eq. (3.1.4)2 and (3.1.3)2, for z¼ 2).



Fig. 3. Fault-displacement systematics measured from one-dimensional sampling in
the Paintbrush tuff, Yucca Mountain, Nevada. Sample line lengths for the different data
sets, which have been sampled at different scales, are listed in the insets on the graphs
(from Marrett et al., 1999). The two plots illustrate the difference between plotting the
displacement against cumulative number and cumulative frequency. A. Data plotted as
logarithm of displacement [km] vs. the logarithm of cumulative number. B. Same data
as in Part A plotted as the logarithm of displacement [km] vs. logarithm of cumulative
frequency. Solid line is the best fit to the linear part of the data.
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Substituting for L or log L in Eqs. (3.1.3) and (3.1.4) from the
Eq. (3.1.1)1 or (3.1.1)2, respectively, we see that the cumulative
number or cumulative frequency of fault-displacements must also
have a power-law distribution,

Nðz;vÞðdÞ ¼Gðz;vÞðBdÞ�mz=p;

log Nðz;vÞðdÞ ¼ log
�
Gðz;vÞB

�mz=p
�
�mz

p
log d; ð3:1:7Þ

fðz;vÞðdÞ ¼ gðz;vÞðBdÞ�mz=p;

log fðz;vÞðdÞ ¼ log
�
gðz;vÞB

�mz=p
�
�mz

p
log d; ð3:1:8Þ

N(z,v)(d) and f(z,v)(d) are respectively the cumulative number and the
cumulative frequency of faults that have a displacement greater
than or equal to d in the sampling of a z-dimensional domain, the
orientation of which is defined by n.

We introduce the parameters sz, R(z,v), and r(z,v) by the
definitions,

szh
mz

p
; Rðz;vÞhGðz;vÞB

�sz ¼ Gðz;vÞB
�mz=p;

rðz;vÞhgðz;vÞB
�sz ¼ gðz;vÞB

�mz=p; ð3:1:9Þ
whereby Eqs. (3.1.7) and (3.1.8) become

Nðz;vÞðdÞ ¼ Rðz;vÞd
�sz ; logNðz;vÞðdÞ ¼ logRðz;vÞ �sz logd; (3.1.10)

fðz;vÞðdÞ ¼ rðz;vÞd
�sz ; log fðz;vÞðdÞ ¼ log rðz;vÞ �sz log d: (3.1.11)

Here, the constants R(z,v) and r(z,v) are the cumulative number and
cumulative frequency, respectively, for faults on which the
displacement is greater than or equal to 1, in the prevailing units, in
a z-dimensional sampling domain that has an orientation defined
by v (see Fig. 3A and the companion paper, Part II, Fig. II:4D, for data
illustrating Eq. (3.1.10)2 for z¼ 1 and 2, respectively; see Fig. 3B, and
II:4C for data illustrating Eq. (3.1.11)2 for z¼ 1). From Eqs. (3.1.9)2,
(3.1.9)3, and (3.1.5)2, we have the relation

rðz;vÞ ¼ Rðz;vÞ=Dðz;vÞ: (3.1.12)

From Eqs. (3.1.10)1, (3.1.11)1, and (3.1.12), we see that

fðz;vÞðdÞ ¼ Nðz;vÞðdÞ
Dðz;vÞ

: (3.1.13)

Clearly, the total number of faults R(z,v) having a displacement
greater than or equal to 1 must change as the size of the sampling
domain changes, and thus it is not a characteristic of the fault
population from a given region. On the other hand, the frequency of
such faults r(z,v) is independent of the size of the domain, as the
number of faults having a displacement greater than or equal to 1 is
normalized by the size of the sampling domain (Eq. (3.1.12)) (see
Fig. 3A and B for plots of the same data using cumulative number
and cumulative frequency with z¼ 1). Thus formulating the equa-
tions for the systematics of both length (Eqs. (3.1.4)) and
displacement (Eqs. (3.1.11)) in terms of the frequency eliminates the
non-uniqueness associated with the finite size of the sampling
domain and results in a single equation that characterizes similar
fault populations in all domains of the same dimensionality in
a homogeneously faulted region. It thus provides the preferred
method for comparing results for different-sized domains. It is easy
to switch between the cumulative number and the cumulative
frequency relations, as convenience dictates, using either
Eqs. (3.1.5) or Eq. (3.1.13) with Eq. (3.1.12), and applying the
definitions in Eq. (3.1.6). Note, however, that for z¼ 1 or 2, both R(z,v)
and r(z,v) can change with the orientation n of the sampling domain
if the faults have a preferred orientation, as is usually the case.

The frequency of faults having a length between L and Lþ dL, or
a displacement between d and dþ dd, is just the differential of the
cumulative frequency distribution f(z,v) measured in a z-dimen-
sional sampling domain that has an orientation given by v. Taking
the differential of Eqs. (3.1.4)1 and (3.1.11)1, we find, respectively,

dfðz;vÞðLÞ ¼�mzgðz;vÞL
ð�mz�1ÞdL; dfðz;vÞðdÞ ¼�szrðz;vÞd

ð�sz�1Þdd:

(3.1.14)

The actual number of faults in each increment is obtained from the
differential frequency equations simply by multiplying the differ-
ential frequency df(z,v) by the size of the domain D(z,v), as defined in
Eq. (3.1.6).

Before using these scaling relationships to estimate the sums in
Eqs. (2.1.18) and (2.2.9), we must clarify the effect of the dimen-
sionality of the sampling domain on the constants in these
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equations. Ideally, we would like to determine the strain in
a volume V that results from displacement on a set of distributed
faults by doing a complete three-dimensional sampling of the faults
within that volume (z¼ 3). As discussed at the beginning of Section
3.1, such a sampling is impossible in practice, so in general, the
scaling relations must be determined frommeasurements made on
two-dimensional surfaces (z¼ 2) or along one-dimensional lines
(z¼ 1). Thus we need to find how the scaling relations for one- and
two-dimensional sampling are related to the relations for three-
dimensional sampling.

To this end, we write the relations between the incremental
numbers of faults as,

dNð1;tÞ ¼ 3Pt dNð3Þ; dNð1;wÞ ¼ 3PwdNð3Þ; dNð2;thÞ ¼ 3PthdNð3Þ;

(3.1.15)

where for the subscripts in parentheses on the cumulative
number N, the numeric subscript indicates the dimensionality of
the sampling domain, and the letter subscript (not used for
a three-dimensional domain) indicates the orientation of the
sampling domain, which is either a line parallel to the unit vector
t or w, or a plane perpendicular to the unit vector h. 3Pt , 3Pw,
and 3Pth are the probabilities that a fault of a given length or
displacement in a three-dimensional domain (the volume V ; left
subscript) will be intersected, respectively, by a randomly located
line parallel to t or w through the volume, or by a randomly
located plane perpendicular to h through the volume (right
subscript). These probabilities are expressed as continuous
functions of either fault-length or fault-displacement. The
incremental number of faults along the direction w differs from
that along the direction t only because of the difference in
orientation of the line, so at this point we develop the relations
only for t. In terms of the frequencies, we use Eqs. (3.1.5) and
(3.1.6) to write Eqs. (3.1.15) as,

dfð1;tÞðLÞ ¼ 3pt dfð3ÞðLÞ; dfð1;tÞðdÞ ¼ 3pt dfð3ÞðdÞ; (3.1.16)

dfð2;thÞðLÞ ¼ 3pth dfð3ÞðLÞ; dfð2;thÞðdÞ ¼ 3pth dfð3ÞðdÞ;
(3.1.17)

where

3pth
V

T 3Pt ; 3pthh
V

Ah
3Pth: (3.1.18)

Thus Eqs. (3.1.16)1 with (3.1.18)1 state that the differential df(1,t)(L) is
the frequency with which faults having lengths between L and
Lþ dL are intersected by a sampling line parallel to t through the
portion of the volume V that is associated with a unit length of the
sampling line. Eq. (3.1.16)2 with (3.1.18)1 has a comparable meaning
with respect to the displacement d, and we could write similar
equations for a sampling line parallel tow by substituting ‘w’ for ‘t’
in Eqs. (3.1.16) and (3.1.18)1. Eqs. (3.1.17) with (3.1.18)2 have
comparable meanings with respect to the two-dimensional
sampling domain normal to h.

We now obtain relations for the probabilities 3Pt , 3Pth, 3pt , and

3pth in terms of the fault-length and fault-displacement. The
probability 3P

ðiÞ
t that the ith fault in a volume V will intersected by

a randomly located line across V parallel to the unit vector t, is just
the area of the fault projected normal to t, divided by the cross-
sectional area At of the volume V normal to t. Introducing Eq.
(3.1.1)1 for the ith fault into Eq. (2.1.15)2 gives,

3P
ðiÞ
t ¼

lðiÞB2=p
�
dðiÞ
�2=p

cos qðiÞ

At
: (3.1.19)
Similarly, the probability 3P
ðiÞ
th that the ith fault in a volume V

will be intersected by a randomly located horizontal plane across V
normal to the unit vector h (Fig. 1B) is just the vertical component
of the down-dip width of the fault divided by the vertical dimen-
sion H of the volume,

3P
ðiÞ
th ¼ mðiÞLðiÞsin rðiÞ

H
¼

mðiÞB1=p
�
dðiÞ
�1=p

sin rðiÞ

H
; (3.1.20)

where r(i) is the fault dip, and the down-dip width of the fault l(i) is

lðiÞ ¼ mðiÞLðiÞ; mðiÞh
lðiÞ

LðiÞ
: (3.1.21)

Note that m(i)¼ l(i) only for a rectangular-shaped fault (see
Eq. (2.1.14)1).

If we make the simplifying assumptions that all faults have the
same shape and orientation (Eq. (2.1.16)), then l, m, a, q, and r are all
constants, and the probabilities are,

3P
ðiÞ
t ¼

l
�
LðiÞ
�2

cos q

At
¼

lB2=p
�
dðiÞ
�2=p

cos q

At
;

3P
ðiÞ
th ¼ mLðiÞsin r

H
¼

mB1=p
�
dðiÞ
�1=p

sin r

H
:

9=
; (3.1.22)

We can then express the probabilities for the individual faults,
Eqs. (3.1.22), in terms of a continuous function of fault-length L or
fault-displacement d by,

3Pt ¼ l cos q
At

L2 ¼ lB2=p cos q
At

d2=p; (3.1.23)

3Pth ¼ m sin r
L ¼ mB1=p sin r

d1=p: (3.1.24)

H H

From Eq. (3.1.18), the corresponding parameters in Eqs. (3.1.16)
and (3.1.17) are

3pt ¼ l cos q L2 ¼ lB2=p cos q d2=p; (3.1.25)

3pth ¼ m sin r L ¼ mB1=p sin r d1=p: (3.1.26)

Substituting Eqs. (3.1.25) and (3.1.26) respectively into Eqs. (3.1.16)
and (3.1.17) gives,

dfð1;tÞðLÞ ¼ lcosqL2 dfð3ÞðLÞ;
dfð1;tÞðdÞ ¼ lB2=pcosqd2=pdfð3ÞðdÞ; (3:1:27)

dfð2;thÞðLÞ ¼msinrLdfð3ÞðLÞ;
dfð2;thÞðdÞ ¼ mB1=psinrd1=pdfð3ÞðdÞ: (3:1:28)
Comparable probabilities for lines parallel to w can be obtained
from Eqs. (3.1.22)1,2, (3.1.23), and (3.1.25) by substituting ‘w’ for ‘t’
and ‘a’ for ‘q’ (see the Supplementary Material, Eq. (S1.1.3)).

3P
ðiÞ
w ¼

l
�
LðiÞ
�2

cos a

Aw
¼

lB2=p
�
dðiÞ
�2=p

cos a

Aw
;

3Pw ¼ l cos a
Aw

L2 ¼ lB2=pcos a
Aw

d2=p;

9>>>>=
>>>>;

(3.1.29)

3pw ¼ l cos a L2 ¼ lB2=p cos a d2=p: (3.1.30)
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3.2. Relations among parameters in the equations describing fault
systematics in domains of different dimensionality

The cumulative number and frequency of faults in a given
sampling domain can be described as a function of either fault-
length or fault-displacement (Eqs. (3.1.3), (3.1.4), (3.1.10), (3.1.11)).
Eqs. (3.1.9) define how the parameters in those two types of
equations are related.We nowwant to find the relations among the
parameters that define the cumulative frequency distributions
determined from sampling domains of different dimensionality. To
that end, we substitute for each of the df(z,v) in Eqs. (3.1.27) and
(3.1.28) using the appropriate Eqs. (3.1.14)1 or (3.1.14)2, according
to whether we want an expression in terms of L or d, and using the
different values of z and (z,v) as required by the opposite sides of
each of Eq. (3.1.27) or (3.1.28). For example, to find the relations
amongm1,m3, g(1,t), and g(3), we use Eq. (3.1.14)1 first with z¼ 1 and
(z,v)¼ (1,t) to substitute for the left of Eq. (3.1.27)1 and then with
z¼ 3 and (z,v)¼ (3) to substitute for the right side, to find,

�m1gð1;tÞ Lð�m1�1Þ ¼ �l cos q m3 gð3Þ Lð�m3þ1Þ: (3.2.1)

For this equation to hold for any value of L, the exponents on the L
on each side of the equation must be equal, and the coefficients of L
on each side of the equation also must be equal. These conditions
then give, respectively,

m1 ¼ m3 � 2; (3.2.2)

gð1;tÞ ¼ gð3Þl cos q
m3

ðm3 � 2Þ; (3.2.3)

where we also used Eq. (3.2.2) to get Eq. (3.2.3).
By parallel analyses, we obtain the relations among m2, m3,

gð2;thÞ, and g(3), from Eq. (3.1.14)1 with z¼ 2 and (z,v)¼ (2,th) for
the left side of Eq. (3.1.28)2, and with z¼ 3 and (z,v)¼ (3) for the
right side; we obtain the relations among s1, s3, r(1,t), and r(3) from
Eqs. (3.1.27)2 by using (3.1.14)2 with z¼ 1 and (z,v)¼ (1,t) for the left
side of Eq. (3.1.27)2 and with z¼ 3 and (z,v)¼ (3) for the right side;
and we obtain the relations among s2, s3, rð2;thÞ, and r(3) from
Eqs. (3.1.28)2 using (3.1.14)2 with z¼ 2 and (z,v)¼ (2, th) for the
left side of Eq. (3.1.28)2 and with z¼ 3 and (z,v)¼ (3) for the right
side. The results are

m2 ¼ m3 � 1; (3.2.4)

gð2;thÞ ¼ gð3Þm sin r
m3

m3 � 1
; (3.2.5)

s1 ¼ s3 �
2
p
; (3.2.6)

rð1;tÞ ¼ rð3ÞlB2=p cos q
s3

ðs3 � 2=pÞ; (3.2.7)

s2 ¼ s3 �
1
p
; (3.2.8)

rð2;thÞ ¼ rð3ÞmB1=psin r
s3

s3 � 1=p
: (3.2.9)

Finally we can obtain the relations among the sz andmz from Eq.
(3.1.9)1, taking z to be first 1 and then 2, and using Eqs. (3.2.2) and
(3.2.4), to find respectively,

s1 ¼ m1

p
¼ m2�1

p
¼ m3�2

p
; s2 ¼ m2

p
¼ m3�1

p
; (3.2.10)

m3 ¼ s1pþ 2 ¼ s2pþ 1: (3.2.11)
We find the relations between r(z,v), and g(z,v) from Eq. (3.2.7) using
Eq. (3.1.9)5 with z¼ 3 and (z,v)¼ (3),

rð1;tÞ ¼ gð3ÞB�ðm3�2Þ=p l cos q
m3

ðm3 � 2Þ; (3.2.12)

and similarly, we find from Eq. (3.2.9) using Eq. (3.1.9)5 with z¼ 3
and (z,v)¼ (3),

rð2;thÞ ¼ gð3ÞmB�ðm3�1Þ=p sin r
m3

m3 � 1
: (3.2.13)

All the relations for which (z,v)¼ (1,t) can also bewritten for (z,v)¼
(1,w) simply by substituting the subscript ‘w’ for ‘t’, and the angle ‘a’
for ‘q’.
3.3. Relations among the maximum displacements in domains of
different dimensionality

The fault with the largest displacement (d(3)
(max)) is the fault for

which N3¼1, where the subscript ‘3’ indicates the sampling
domain is the three-dimensional volume. Using this condition in
Eqs. (3.1.10)1 and (3.1.11)1 with z¼ 3 and (z,v)¼ (3) gives,

within domain V : Rð3Þ ¼
�
dðmaxÞ
ð3Þ

�s3
; rð3Þ ¼ 1

V

�
dðmaxÞ
ð3Þ

�s3
;

d
ðmaxÞ
ð3Þ ¼

�
rð3ÞV

�1=s3
; ð3:3:1Þ

where Eq. (3.3.1)3 comes from (3.3.1)2. Eq. (3.3.1)2 also can be
obtained from Eq. (3.1.10)1 with (3.1.12) and (3.1.6)1, or from
Eq. (3.3.1)1 with (3.1.12). Similar relations apply to two and one
dimensions, although the fault for which N3¼1 is not, in general,
the same as the faults for which N2¼1 or N1¼1, because the
probability is less than 1 that the largest fault N3¼1 will be inter-
sected by a two- or one-dimensional sampling domain that is
randomly located in the volume V . The comparable relations for
a map area Ah ¼ T W (Eq. (3.1.6)2; see Fig. 2A) from Eqs. (3.1.10)1
and (3.1.12) with z¼ 2 and (z,v)¼ (2, th) are,

within domainAh : Rð2;thÞ ¼
�
dðmaxÞ
ð2;thÞ

�s2
; rð2;thÞ ¼

1
Ah

�
dðmaxÞ
ð2;thÞ

�s2
;

dðmaxÞ
ð2;thÞ ¼

�
rð2;thÞAh

�1=s2
; ð3:3:2Þ

and for sampling in a one-dimensional domain, i.e. along a line of
length T parallel to t or a line of lengthW parallel tow (Eq. (3.1.6)3;
see Fig. 2A), we have from Eqs. (3.1.10)1 and (3.1.12) with z¼ 1 and
(z,v)¼ (1,t) or (1,w),

within domain T : Rð1;tÞ ¼
�
dðmaxÞ
ð1;tÞ

�s1
; rð1;tÞ ¼ 1

T

�
dðmaxÞ
ð1;tÞ

�s1
;

dðmaxÞ
ð1;tÞ ¼

�
rð1;tÞT

�1=s1
; ð3:3:3Þ

withindomainW : Rð1;wÞ ¼
�
dðmaxÞ
ð1;wÞ

�s1
; rð1;wÞ ¼

1
W

�
dðmaxÞ
ð1;wÞ

�s1
;

d
ðmaxÞ
ð1;wÞ ¼

�
rð1;wÞW

�1=s1
: ð3:3:4Þ

We can now see how the maximum displacement for sampling
from a one-dimensional domain is related to that for sampling
a three-dimensional domain by introducing Eqs. (3.3.1)2 and
(3.3.3)2 into Eqs. (3.2.7):

�
dðmaxÞ
ð1;tÞ

�s1 ¼ lB2=p cos q
V =T

s3
s1

�
dðmaxÞ
ð3Þ

�s3
: (3.3.5)
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From Eq. (3.1.22)2, using Eq. (2.1.9)1 and setting i¼ 1, we find the
relation,

lB2=p cos q
V =T

¼ 3P
ð1Þ
t�

dðmaxÞ
ð3Þ

�2=p : (3.3.6)

Substituting Eq. (3.3.6) into Eq. (3.3.5), and using Eq. (3.2.6) to
change the exponent on d

(3)
(max) then gives

dðmaxÞ
ð1;tÞ ¼

�
3P

ð1Þ
t

s3
s1

	1=s1
dðmaxÞ
ð3Þ : (3.3.7)

We know, however, that

dðmaxÞ
ð1;tÞ � dðmaxÞ

ð3Þ so 3P
ð1Þ
t

s3
s1

� 1 and 3P
ð1Þ
t � s1

s3
: (3.3.8)

This means that along a sampling line that is parallel to t and is
randomly placed in the volume V , the probability 3P

ð1Þ
t that the

maximum displacement observed is actually the maximum
displacement in the volume is no greater than s1/s3.

Similarly, from Eq. (3.2.9) with Eqs. (3.3.1)2, (2.1.9)5, and (3.3.2)2,
we have,

�
dðmaxÞ
ð2;thÞ

�s2 ¼ mB1=p sin r

H

s3
s3 � 1=p

�
dðmaxÞ
ð3Þ

�s3
: (3.3.9)

Using Eqs. (3.1.22)4 with i¼ 1 and (3.2.8) gives,

mB1=p sin r

H
¼ 3P

ð1Þ
th�

d
ðmaxÞ
ð2;thÞ

�1=p ; (3.3.10)

Substituting Eq. (3.3.10) into Eq. (3.3.9), and using Eq. (3.2.8) to
change the exponent on d

(2,th)
(max) and rewrite the coefficient, we find,

dðmaxÞ
ð2;thÞ ¼

�
3P

ð1Þ
th

s3
s2

	1=s3
dðmaxÞ
ð3Þ : (3.3.11)

Because we must have

dðmaxÞ
ð2;thÞ � dðmaxÞ

ð3Þ ; then 3P
ð1Þ
th

s3
s2

�1 and 3P
ð1Þ
th �

s2
s3
: (3.3.12)

Thus in a horizontal sampling plane that is perpendicular to h and
is randomly placed in the volume V , the probability 3P

ð1Þ
th that the

maximum displacement observed is actually the maximum
displacement in the volume is no greater than s2/s3.
3.4. Constraints on the size of the sampling volume relative to the
largest included fault

From Eqs. (3.3.8)3 and (3.3.12)3 we can derive distinct limits on
the minimum size of the volume V that must be used for adequate
sampling of the faults, or conversely on the maximum size of the
largest fault that can be included in this type of strain analysis for
a given sized volume. Introducing Eq. (3.1.22)1 with (2.1.9)1 into
Eq. (3.3.8)3, and introducing Eq. (3.1.22)3 into Eq. (3.3.12)3, we find,

3P
ð1Þ
t ¼

l
�
Lð1Þ
�2

cos q

WH
� s1

s3
; 3P

ð1Þ
th ¼ mLð1Þsin r

H
� s2

s3
: (3.4.1)

The inequalities in Eqs. (3.4.1) give,

WH � s3
s1

l
�
Lð1Þ
�2

cos q; H � s3
s2

mLð1Þsin r: (3.4.2)
Looking first at Eq. (3.4.2)1, we know from Eq. (2.1.13)1 that
l (L(1))2 is the area of the largest fault, and thus l(L(1))2cos q is the
area of that fault projected onto a plane normal to the transect line
t. From Equation (3.2.6), we also know that s1< s3. Thus Eq. (3.4.2)1
says that the cross-sectional area WH of the volume V measured
normal to the transect line t is at least (s3/s1)> 1 times the area of
the largest fault projected on a plane normal to t.

Looking next at Eq. (3.4.2)2, we know from Eq. (3.1.21) that
mL(1)¼ l (1) is the down-dip width of the largest fault and mL(1) sin r

is therefore the vertical extent of the largest fault. From Equation
(3.2.8), we also know that s2< s3. Thus Eq. (3.4.2)2 says that the
vertical dimension H of the volume V should be at least (s3/s2)> 1
times the vertical dimension of the largest fault. Equations (3.4.2)
are independent constraints on the size of V , which therefore
must apply for all possible values of H . The minimum possible
value of H is given by the equality in Eq. (3.4.2)2. If we substitute
this value for H into Eq. (3.4.2)1, we find,

W � s2
s1

l

m

cos q
sin r

Lð1Þ: (3.4.3)

We note, from Eqs. (2.1.13)2 and (3.1.21)2, that for a rectangular
fault, l/m¼ 1. To simplify the estimate of the horizontal width W of
the volume V , we therefore assume a rectangular, vertical (r¼ 90�)
fault and a traverse direction t perpendicular to that fault (q¼ 0�).
With these assumptions, Eqs. (3.4.2)2 and (3.4.3) give,

for
l

m
¼ 1; q ¼ 0�; and r ¼ 90�;

W � s2
s1

Lð1Þ; H � s3
s2

mLð1Þ ¼ s3
s2

lð1Þ:

)
(3.4.4)

Because s1< s2< s3 (Eqs. (3.2.6) and (3.2.8)), the dimensions of the
volume V must be larger than those of the largest vertical-equiv-
alent-fault that can be included in an analysis using fault
systematics.

Thus, for an analysis that relies on the relations of fault
systematics, Equations (3.4.2)e(3.4.4) prescribe, for a given size of
the largest fault, how large a volume we must consider in order for
the analysis to be valid. Conversely, for a volume of a given size,
these equations prescribe the largest fault that can be included in
this type of analysis.

We can express these constraints in terms of the maximum
displacement on the largest fault. Introducing Eq. (3.1.1) for the
largest fault into the inequalities in Eq. (3.4.4) gives,

for
l

m
¼ 1; q ¼ 0�; and r ¼ 90�;

W � s2
s1

B
1
p

�
d
ðmaxÞ
ð3Þ

�1
p
; H � s3

s2
mB

1
p

�
d
ðmaxÞ
ð3Þ

�1
p
:

9=
; (3.4.5)

In the companion paper (Part II, Section 3) we use the empirical
results for the constants p, B, and sz to give quantitative estimates
for these constraints.

4. Estimation of infinitesimal strains using fault population
systematics: summary and comparison of results for three-,
two-, and one-dimensional sampling domains

We can apply fault population systematics to the estimation of
infinitesimal extension and shear strain in two specific circum-
stances for which sampling is incomplete. In the first case, sampling
resolution is incomplete, and we determine the total strains for
a local domain in which we systematically have studied only the
larger faults, and we need to account for the contributions of the
smaller unsampled faults. We assume we have measured
the displacement d

(z,v)
(max) on the largest fault, and we use the
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equation for the cumulative frequency of fault-displacement
(Eq. (3.1.11)) to determine the contribution of the smaller faults to
the total strain. In the second case, sampling of the spatial extent of
the domain is incomplete, and we use the equation for the cumu-
lative frequency of fault-displacement to determine the strain for
a regional domain when our observations are limited to a local
domain that does not span the regional domain, and we need to
determine the effects of both the larger and the smaller faults.

Both cases require the assumption that the power-law scaling
relationship for the cumulative frequency of the displacement is
valid for faults of all sizes, both observed and unobserved, and that
the same equation applies throughout the domain, i.e. that the
faults are homogeneously distributed in the domain. Moreover, in
practice one also must make some estimate for the limit of the
power-law distribution at large displacements where the frequency
curve falls off from the power-lawmodel (Fig. 3B; see also Fig. II:4C
in the companion paper, Part II). Without such a limit, the power-
law model would overestimate the strain. This modification to the
theory for practical applications is discussed byMarrett (1996), and
it will not be included in the analysis in this paper.

In Section 4.1, we summarize the derivations of the strain
equations for the first case, considering local sampling domains
having three, two, and one spatial dimensions. We show that we
can estimate the total strain in a local domain if we know the slope
of the displacementefrequency curve and the displacement on the
largest fault in the domain, which constrains the intercept for the
log-linear cumulative frequency line by Eqs. (3.3.1)2, (3.3.2)2, or
(3.3.3)2. Details of the derivations for the domains of three, two, and
one dimensions are given in the Supplementary Material, Sections
S1, S2, and S3, respectively.

The equations differ for sampling domains having a different
number of dimensions because the scale factor that defines the
contribution of a specific fault to the strain of a domain is different.
Therefore in Sections 4.2 and 4.3, we examine how these different
equations are related and how we can constrain the three-dimen-
sional strain from sampling in either two dimensions (Section 4.2)
or one dimension (Section 4.3). In Section 4.4, we then indicate how
we can make estimates of strain for the second case in which
sampling of the spatial extent of the domain is incomplete, and the
domain of interest is larger than the sampling domain.
4.1. Equations for strain from sampling in domains of different
dimensionality: summary of derivations

For a given spatial domain, the extensional strain that is
contributed by the ith fault within that domain is, for three, two,
and one dimensions, a weighting factor times the local extension
due to slip on the fault. The weighting factor is different for each
dimensionality and is determined by the size of the fault relative to
the domain. In summarizing these equations below, we list on the
left the equation numbers, mostly from the detailed derivation in
the Supplementary Material, and on the right, we give an equation
number for convenient reference to this section.

The extensional strain parallel to t that is contributed to the
sampling domain by the ith fault is given for a three-, two-, and
one-dimensional sampling domain by the respective relations,

ðS1:1:4Þ eðiÞð3;tÞ ¼ 3P
ðiÞ
t

"
dðiÞcos f

T

#
; (4.1.1)

ðS2:1:3Þ eðiÞð2;tÞ ¼ 2P
ðiÞ
t

"
dðiÞcos f

T

#
; (4.1.2)
ðS3:1:1Þ eðiÞð1;tÞ ¼ 1P
ðiÞ
t

"
dðiÞcos f

T

#
: (4.1.3)

The shear strains for a pair of orthogonal lines parallel to t andw are
given by the equations,

ðS1:1:5Þ eðiÞð3;gÞ ¼ 1
2

(
3P

ðiÞ
t

"
dðiÞcos b

T

#
þ 3P

ðiÞ
w

"
dðiÞcos f

W

#)
;

(4.1.4)

ðS2:1:4Þ eðiÞð2;gÞ ¼ 1
2

(
2P

ðiÞ
t

"
dðiÞcos b

T

#
þ 2P

ðiÞ
w

"
dðiÞcos f

W

#)
;

(4.1.5)

ðS3:1:2Þ eðiÞð1;gÞ ¼ 1
2

(
1P

ðiÞ
t

"
dðiÞcos b

T

#
þ 1P

ðiÞ
w

"
dðiÞcos f

W

#)
:

(4.1.6)

Theweighting factor zP
ðiÞ
v in each equation is the probability that the

ith fault (superscript) in a z-dimensional domain (left subscript) is
intersected by a randomly located line through the domain oriented
parallel to t or w (as indicated by the right subscript v¼ t or w,
respectively). The probability is a ratio, for which the numerator is
the projected size of the ith fault, and the denominator is the pro-
jected sizeof the samplingdomain. For z¼ 3, the sizeof the fault is its
area projected onto a plane normal to the direction t (orw), and the
size of the samplingdomain is the cross-sectional area of thedomain
on the same plane; for z¼ 2, the size of the fault is the length of the
fault line in the sampling plane projected onto a line normal to the
direction t (orw), and the size of the sampling domain is the length
of the domain normal to t (or w); for z¼ 1, any fault in the domain
cuts completely through the domain, so the probability is 1.
Expressions for the probabilities in each of the above equations,
expressed in terms of the displacement, are,

ð3:1:22Þ2;ð3:1:29Þ2;ðS1:1:3Þ2 3P
ðiÞ
t ¼ lB2=p cosq

At

�
dðiÞ
�2=p

;

3P
ðiÞ
w ¼ lB2=p cosa

Aw

�
dðiÞ
�2=p

; (4.1.7)

ðS2:1:20Þ 2P
ðiÞ
t ¼ nðiÞB1=p cos q

W sin r

�
dðiÞ
�1=p

;

2P
ðiÞ
w ¼ nðiÞB1=p cos a

T sin r

�
dðiÞ
�1=p

; (4.1.8)

ðS3:1:5Þ 1P
ðiÞ
t ¼ 1; and 1P

ðiÞ
w ¼ 1: (4.1.9)

In Eq. (4.1.8), n(i) are geometric factors defined by

ðS2:1:17Þ nðiÞh
L
ðiÞ

LðiÞ
¼ AðiÞ=[ðiÞ

LðiÞ
¼ AðiÞ

[ðiÞLðiÞ
(4.1.10)

where LðiÞ is the average length of the ith fault trace on random
horizontal planes through the volume that cut the fault, L(i) is the
maximum horizontal length of the fault, A(i) is the actual area of the
ith fault, and [(i) is the maximum down-dip width of the fault. n(i)

therefore accounts, on average, for the effect of the shape of the
fault tip line on the apparent length of the fault trace in the hori-
zontal sampling plane. It has a value of 1 for a rectangular fault.
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Substituting Eqs. (4.1.7)e(4.1.9) into Eqs. (4.1.1)e(4.1.6), we find
that for the three- and two-dimensional sampling domains, the
equations for extension and for shear strain in the same domain
have similar forms, differing only by the constant terms. Thus, if we
let ‘x’ in the subscripts stand for either ‘t’ or ‘g’, we can write the
equations in compact form as,

ðS1:1:10Þ eðiÞð3;xÞ ¼ Dð3;xÞ
V

�
dðiÞ
�ð1þ2=pÞ

; (4.1.11)

ðS2:1:23Þ eðiÞð2;xÞ ¼ Dð2;xÞ
T W

�
dðiÞ
�ð1þ1=pÞ

; (4.1.12)

ðS3:1:6Þ
eðiÞð1;tÞ ¼

�
cos f
T

�
dðiÞ;

eðiÞð1;gÞ ¼ 1
2

h�cos b
T

�
dðiÞ þ

�cos f
W

�
dðiÞ
i
;

9=
; (4.1.13)

The constants D(3,x) and D(2,x) are defined by,

ðS1:1:8Þ;ðS1:1:9Þ Dð3;tÞhlB2=pðcosqcosfÞ;
Dð3;gÞh0:5lB2=pðcosqcosbþcosfcosaÞ;

)

(4.1.14)

Dð2;tÞh
nB1=p

sin r
cos q cosf;

9=

ðS2:1:22Þ

Dð2;gÞh
nB1=p

2sin r
½cos q cos bþ cos a cosf�:; (4.1.15)

We do not define D for the case of one-dimensional sampling,
because to obtain the total shear strain from Eq. (4.1.13)2, we
must sum the two terms in the equation over different sets of
faults: one set comprises faults intersected by a line parallel to t;
the other set comprises faults intersected by a line parallel to w,
which is orthogonal to t. Sampling in these two directions means
that the total shear strain involves two different distributions,
whereas the extension (Eq. (4.1.13)1) involves only one distribu-
tion. Thus the two Eqs. (4.1.13) may not both be simplified to
a scale-independent constant D times a single variable.

The expressions for the differential of the strain component
are derived by assuming that the discrete strain contributed by
one fault is in general a very small part of the total strain. We
therefore can treat the discrete increments of strain described in
Eqs. (4.1.1)e(4.1.6) as differentials of continuous functions, which
are defined in terms of a continuous displacement variable d and
the differential of a continuous cumulative number distribution
dN(d) that defines the displacement distribution in the sampling
domain. Using Eq. (3.1.13), the continuous cumulative number
distribution can be converted to a continuous cumulative
frequency distribution df(d). The continuous-function descrip-
tions are,

ðS1:1:12Þ deð3;xÞðdÞ ¼ Dð3;xÞd
ð1þ2=pÞ df3ðdÞ; (4.1.16)

ðS2:1:25Þ deð2;xÞðdÞ ¼ Dð2;xÞd
ð1þ1=pÞ dfð2;thÞðdÞ; (4.1.17)

ðS3:1:9Þ
deð1;tÞðdÞ ¼ dcosfdfð1;tÞðdÞ;
deð1;gÞðdÞ ¼ 0:5

n
dcosb dfð1;tÞðdÞþdcosf dfð1;wÞðdÞ

o
�

(4.1.18)
The different distributions, df(1,t)(d) and df(1,w)(d), required for
determining the shear strain with one-dimensional sampling
become explicit in Eq. (4.1.18)2. Then using Eq. (3.1.14)2, we find,

ðS1:1:13Þ deð3;xÞ ¼ �Dð3;xÞs3rð3Þd
�ðs3�2=pÞ dd; (4.1.19)

ðS2:1:27Þ deð2;xÞ ¼ �Dð2;xÞs2rð2;thÞd
�ðs2�1=pÞ dd; (4.1.20)

ðS3:1:10Þ
deð1;tÞðdÞ ¼�s1rð1;tÞ cosfd

�s1 dd;

de ðdÞ ¼�0:5s
h
r cosbþr cosf

i
d�s1 dd:

)

ð1;gÞ 1 ð1;tÞ ð1;wÞ

(4.1.21)

All the Equations (4.1.19)e(4.1.21) for the differential of the
extension are actually the same, although each is expressed in
terms of the variables pertinent to the number of dimensions in the
specific sampling domain (see Supplementary Material Sections
S1.1, S2.2, S3.2). The same statement also applies to the differen-
tials of the shear strain. This identity is apparent because from
Eqs. (3.2.6) and (3.2.8), the exponents on the displacement are all
equal, and we can easily show, using Eqs. (4.1.14) and (4.1.15) with
Eqs. (3.2.6)e(3.2.9) that,

Dð3;tÞs3rð3Þ ¼Dð2;tÞs2rð2;thÞ ¼ 0:5cosfs1rð1;tÞ;
Dð3;gÞs3rð3Þ ¼Dð2;gÞs2rð2;thÞ ¼ 0:5cosbs1rð1;tÞþ0:5cosfs1rð1;wÞ:

�
(4.1.22)

We can also derive Eqs. (4.1.20) and (4.1.21) directly fromEq. (4.1.19)
(for details, see the Supplementary Material, Sections S2.1, S2.2,
S3.1, and S3.2). These derivations demonstrate the consistency of
the definitions of the probabilities in Eqs. (4.1.7)e(4.1.9).

The cumulative strain contributed by all faults having
displacements greater than or equal to d is given by the integrals of
Eqs. (4.1.19)e(4.1.21),

ðS1:2:1Þ eðcumÞ
ð3;xÞ ðdÞ ¼

Z
V

deð3;xÞðdÞ ¼�Dð3;xÞs3rð3Þ
Z
V

d�ðs3�2=pÞdd;

(4.1.23)

ðS2:3:1Þ eðcumÞ
ð2;xÞ ðdÞ ¼

Z
Ah

deð2;xÞðdÞ ¼

� Dð2;xÞs2rð2;thÞ
Z
Ah

d�ðs2�1=pÞ dd; ð4:1:24Þ

ðS3:4:1Þ eðcumÞ
ð1;tÞ ðdÞ ¼

Z
T

deð1;tÞðdÞ ¼�s1rð1;tÞcosf
Z
T

d�s1 dd;

(4.1.25)

ðS3:4:11Þ eðcumÞ
ð1;gÞ ðdÞ ¼

Z
T ;W

deð1;gÞðdÞ ¼ 1
2

2
4� s1rð1;tÞcos b

�
0
@ Z

T

d�s1 dd

1
A� s1rð1;wÞcos f

�
0
@ Z

W

d�s1 dd

1
A
3
5: ð4:1:26Þ

where the symbols below the integral signs identify the domain for
which the strain is determined. Taking the indefinite integrals gives,
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ðS1:2:2Þ eðcumÞ
ð3;xÞ ðdÞ¼�Dð3;xÞs3rð3Þ

"
d½1�ðs3�2=pÞ�

1�ðs3�2=pÞþCð3Þ

#
; (4.1.27)

ðS2:3:2Þ eðcumÞ
ð2;xÞ ðdÞ ¼�Dð2;xÞs2rð2;thÞ

"
d½1�ðs2�1=pÞ�

1�ðs2�1=pÞþCð2;thÞ

#
;

(4.1.28)

ðS3:4:2Þ eðcumÞ
ð1;tÞ ðdÞ ¼ �s1rð1;tÞcos f

"
dð1�s1Þ

ð1� s1Þ
þ Cð1;tÞ

#
; (4.1.29)

ðS3:4:12Þ eðcumÞ
ð1;gÞ ðdÞ ¼ 1

2

"
�s1rð1;tÞcosb

 
dð1�s1Þ

ð1�s1Þ
þKð1;tÞ

!

�s1rð1;wÞcosf

 
dð1�s1Þ

ð1�s1Þ
þKð1;wÞ

!#
: (4.1.30)

The constants of integration are evaluated in each case in terms of
the largest displacement in each sample by setting the left side of
Eqs. (4.1.27)e(4.1.30) equal to the extension and shear strain
contributed by the largest fault in each sample. These extensions
and shear strains are determined by setting i¼ 1 in Eqs. (4.1.1)e
(4.1.6), for which

d ¼ dðiÞ



i¼1 ¼ dð1Þðz;vÞ ¼ dðmaxÞ

ðz;vÞ : (4.1.31)

Eqs. (3.3.7) and (3.3.11) show that these maximum displacements
are in general different for sampling domains of different dimen-
sionality, and that the largest fault in a lower-dimensioned
sampling domain can be smaller, and can have a smaller displace-
ment, than the largest fault in the volume.

Evaluating the constants of integration from these constraints,
we find,

ðS1:2:6Þ Cð3Þ ¼ �
�
dðmaxÞ
ð3Þ

�½1�ðs3�2=pÞ�� 1þ 2=p
s3½1� ðs3 � 2=pÞ�

	
;

(4.1.32)

ðS2:3:7Þ Cð2;thÞ ¼ �
�
d
ðmaxÞ
ð2;thÞ

�½1�ðs2�1=pÞ�� 1þ 1=p
s2½1� ðs2 � 1=pÞ�

	
;

(4.1.33)

ðS3:4:7Þ Cð1;tÞ ¼ �
�
dðmaxÞ
ð1;tÞ

�ð1�s1Þ
�

1
s1ð1� s1Þ

�
; (4.1.34)

ðS3:4:17Þ
Kð1;tÞ ¼ �

�
dðmaxÞ
ð1;tÞ

�ð1�s1Þ
�

1
s1ð1� s1Þ

	
;

Kð1;wÞ ¼ �
�
dðmaxÞ
ð1;wÞ

�ð1�s1Þ
�

1
s1ð1� s1Þ

	
�

(4.1.35)

Introducing these constants from Eqs. (4.1.32)e(4.1.35) into the
integrated Eqs. (4.1.27)e(4.1.30), gives the cumulative strains as
a function of the displacement:

ðS1:2:7Þ eðcumÞ
ð3;xÞ ðdÞ ¼ eð1Þð3;xÞ

2
4� 1þ 2=p

1� ðs3 � 2=pÞ
�

� s3
1� ðs3 � 2=pÞ

0
@ d

dðmaxÞ
ð3Þ

1
A½1�ðs3�2=pÞ�

3
5;
(4.1.36)
ðcumÞ ð1Þ 4� 1þ1=p
�

ðS2:3:9Þ eð2;xÞ ðdÞ ¼ eð2;xÞ

2
1�ðs2�1=pÞ

� s2
½1�ðs2�1=pÞ�

0
@ d

dðmaxÞ
ð2;thÞ

1
A½1�ðs2�1=pÞ�

3
5;
(4.1.37)

ðS3:4:8Þ eðcumÞ
ð1;tÞ ðdÞ ¼ eð1Þð1;tÞ

2
4 1
1� s1

� s1
1� s1

0
@ d

dðmaxÞ
ð1;tÞ

1
Að1�s1Þ35;

(4.1.38)

ðS3:4:19Þ eðcumÞ
ð1;gÞ ðdÞ ¼

1
2

X
v¼ t;w

eð1Þð1;gvÞ

2
4 1
ð1� s1Þ

� s1
ð1� s1Þ

0
@ d

dðmaxÞ
ð1;vÞ

1
Að1�s1Þ

3
5: ð4:1:39Þ

The shear strains eð1Þð1;gvÞ that appear in Eq. (4.1.39) under the
summation over v¼ t,w, are due to the displacements dðmaxÞ

ð1;tÞ and
dðmaxÞ
ð1;wÞ which occur on the largest fault intersected by the
sampling lines parallel to t and w, respectively. These shear
strain components define, respectively, the shear of the line
parallel to t in the direction w, and the shear strain of the line
parallel to w in the direction t (see the Supplementary Material,
Eq. (S3.4.20)).

Because each of Eqs. (4.1.37)e(4.1.39) is the cumulative strain
due to faults having displacements between d

(z,v)
(max) and d, we find

the total strain by setting d¼ 0.

ðS1:2:8Þ eðtotÞð3;xÞ ¼ eð1Þð3;xÞ

�
1þ 2=p

1� ðs3 � 2=pÞ
�
; (4.1.40)

ðS2:3:10Þ eðtotÞð2;xÞ ¼ eð1Þð2;xÞ

�
1þ 1=p

1� ðs2 � 1=pÞ
�
; (4.1.41)
ðS3:4:9Þ;ðS3:4:22Þ2 ;ðS3:4:23Þ

eðtotÞð1;tÞ ¼ eð1Þð1;tÞ

�
1

1� s1

	
;

eðtotÞð1;gÞ ¼ 0:5
X

v¼ t;w
eð1Þð1;gvÞ

1
ð1� s1Þ

¼ eð1Þð1;gÞ
1

ð1� s1Þ
:

9>=
>; (4:1:42)

Note that because of Eqs. (3.2.6) and (3.2.8), the denominator on the
right of each of the equations (4.1.40)e(4.1.42) equals (1� s1). Thus
the equations differ in the numerator and in the strain contributed
by the largest fault in the domain, which in turn depends on the
magnitude of the probability defined in Eqs. (4.1.7)e(4.1.9).

It is of interest to know what proportion of the extension or
shear strain in the given direction is contributed by the largest fault,
and what proportion is contributed by all the smaller faults. We
evaluate the ratio of the strain component contributed by the
largest fault to the total strain component by rearranging
Eq. (4.1.40) to find

eð1Þð3;xÞ
eðtotÞð3;xÞ

¼ pþ 2� s3p
pþ 2

¼ pþ 2�m3

pþ 2
; (4.1.43)
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where we used Eq. (3.1.9)1 with z¼ 3 to find the second relation.
The ratio in Eq. (4.1.43) must be greater than zero, because the ratio
must be positive; and it must be less than 1, because the largest
fault cannot account for more than all the extension. Thus,

0 <
eð1Þð3;xÞ
eðtotÞð3;xÞ

¼ pþ 2� s3p
pþ 2

� 1; (4.1.44)

This implies the following constraints on the possible values of the
parameters relative to one another,

0 � s3 < 1þ 2=p; 0 � s2 < 1þ 1=p; 0 � s1 < 1; (4.1.45)

where the second two equations come from the first by using Eqs.
(3.2.6) and (3.2.8). We can use Eq. (3.1.9)1 to express Eq. (4.1.45)1 in
terms of mz, which leads to the constraints,

0 � m3 < pþ 2; 0 � m2 < pþ 1; 0 � m1 < p; (4.1.46)

where the second two equations come from the first using Eqs.
(3.2.2) and (3.2.4). Eqs. (4.1.46) also imply,

p > m3 � 2; p > m2 � 1; p > m1: (4.1.47)

The cumulative strains are conveniently expressed as a fraction
of the total strains by dividing the cumulative strains in Eqs.
(4.1.36)e(4.1.39) by the appropriate total strains from Eqs. (4.1.40)e
(4.1.42):

ðS1:2:10Þ1
eðcumÞ
ð3;xÞ ðdÞ
eðtotÞð3;xÞ

¼ 1� s3p
pþ2

0
@ d

dðmaxÞ
ð3Þ

1
A½1�ðs3�2=pÞ�

; (4.1.48)

ðS2:3:12Þ1
eðcumÞ
ð2;xÞ ðdÞ
eðtotÞð2;xÞ

¼ 1� s2p
pþ1

0
@ d

dðmaxÞ
ð2;thÞ

1
A½1�ðs2�1=pÞ�

; (4.1.49)
ðS3:4:10Þ;ðS3:4:25Þ

eðcumÞ
ð1;tÞ ðdÞ
eðtotÞð1;tÞ

¼ 1� s1

"
d

d
ðmaxÞ
ð1;tÞ

#ð1�s1Þ
;

eðcumÞ
ð1;gÞ ðdÞ
eðtotÞð1;gÞ

¼ 1� 0:5

eð1Þð1;gÞ

X
v¼t;w

eð1Þð1;gvÞ

0
@s1

2
4 d

d
ðmaxÞ
ð1;vÞ

3
5ð1�s1Þ1A

9>>>>>>>>>=
>>>>>>>>>;

(4:1:50)
Note again that because of Eqs. (3.2.6) and (3.2.8), the exponents on
the displacement terms are all equal to (1� s1).

The significant difference among the integrated equations for
the extensional strains or for the shear strains (Eqs. (4.1.36)e
(4.1.39)) is in the evaluation of the constants of integration. Each
constant is different because it is evaluated in terms of the strain in
each domain that is contributed by the largest fault, identified by
setting i¼ 1 in Eqs. (4.1.1)e(4.1.6). This strain in turn depends on
a probability z

PðiÞ
n that a fault will be intersected by the specific

sampling domain, and this probability is different for the domains
having a different dimensionality. Thus for the different curves that
plot the cumulative strain as a function of displacement for
domains having a different dimensionality, the anchor points are at
different strains, and as a result, the total strain will have different
values for the different domains.

Because the cumulative strain must be less than or equal to the
total strain, we can use Eq. (4.1.48) to derive the same constraints
on the value of s3 as we found in Eq. (4.1.45) (see the Supplementary
Material, Section S4.1)
4.2. Comparison of strains from sampling domains of two and three
dimensions

We can compare the total strains for a two-dimensional
sampling domain to those for the three-dimensional sampling
domain by dividing Eqs. (4.1.41) by Eq. (4.1.40), and using
Eqs. (3.2.6) and (3.2.8) to find,

ðS4:2:2Þ
eðtotÞð2;xÞ
eðtotÞð3;xÞ

¼
eð1Þð2;xÞ
eð1Þð3;xÞ

�
pþ 1
pþ 2

�
: (4.2.1)

For both the extensional strain (x¼ t) and for the shear strain
(x¼ g), we can show (see the Supplementary Material, Section
S4.2) that Eq. (4.2.1) implies the constraint,

ðS4:2:16Þ
eðtotÞð2;xÞ
eðtotÞð3;xÞ

�
�
s3
s2

	�
pþ 1
pþ 2

�
; (4.2.2)

where, as before, the subscript ‘x’ stands for either ‘t’ or ‘g’.

4.3. Comparison of strains from sampling domains of one and three
dimensions

We also can compare the total extension inferred from a one-
dimensional sampling domain to that inferred from a three-
dimensional sampling domain by dividing Eq. (4.1.42)1 by Eq.
(4.1.40) with the subscript ‘x’ set to ‘t’. Using Eqs. (3.2.6) and (3.2.8),
the result simplifies to

ðS4:3:2Þ
eðtotÞð1;tÞ
eðtotÞð3;tÞ

¼
eð1Þð1;tÞ
eð1Þð3;tÞ

"
p

pþ 2

#
: (4.3.1)

After some manipulation, we can show (see the Supplementary
Material, Section S4.3) that Eq. (4.3.1) leads to the constraint,
ðS4:3:4Þ
eðtotÞð1;tÞ �

�
s3
	�

p
�
: (4.3.2)
eðtotÞð3;tÞ
s1 pþ 2

Finally, we can compare the shear strain inferred from one-
dimensional sampling to that for three-dimensional sampling by
dividing Eq. (4.1.42)2 by Eq. (4.1.40), using the subscript ‘x’ set to ‘g’.

ðS4:4:1Þ
eðtotÞð1;gÞ
eðtotÞð3;gÞ

¼
0:5
�
eð1Þð1;gtÞ þ eð1Þð1;gwÞ

� 1
ð1� s1Þ

eð1Þð3;gÞ

�
1þ 2=p

1� ðs3 � 2=pÞ
� : (4.3.3)

Again after some manipulation, we can show (see the
Supplementary Material, Section S4.4) that Eq. (4.3.3) leads to the
constraint,

ðS4:4:8Þ
eðtotÞð1;gÞ
eðtotÞð3;gÞ

�
�
s3
s1

	1=s1� p
pþ 2

�
: (4.3.4)
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The constraint on the shear strain in Eq. (4.3.4) is not as strin-
gent as the constraint for the extension in Eq. (4.3.2). The results are
different because determining the shear strain from one-dimen-
sional sampling requires two separate samplings along orthogonal
lines, which means that two different distributions are required to
calculate the shear strain. This results in equations that cannot be
factored and condensed to the same extent as the equations for
extension, which then results in less stringent constraints.

4.4. Estimating strains in a regional domain from sampling of
a local domain

If the sampling of the spatial extent of a regional domain is
incomplete, we only can know the displacement on the largest fault
in the local domain that has been sampled, which constrains the
cumulative frequency curve by Eqs. (3.3.1)2, (3.3.2)2, or (3.3.3)2.
That constraint, however, is in general not valid outside the local
domain, because there is no guarantee that the fault with the
largest displacement within the local domain would be the fault
with the largest displacement in the larger regional domain. The
equations for calculating the strains in a local domain depend on
knowing the maximum displacement on the largest fault within
the domain, or the associated contribution of that fault to the strain
(Eqs. (4.1.36)e(4.1.39), as well as the subsequent equations derived
from these). We can convert these equations to ones appropriate
for calculating the strains in a regional domain, in which the largest
fault and the associated maximum displacement are unknown, by
substituting for the maximum displacement from Eqs. (3.3.1)3,
(3.3.2)3, or (3.3.3)3. This substitution replaces the knownmaximum
displacement in a local domain with an estimate for the maximum
displacement in the larger regional domain that is based on the
displacement e frequency systematics and the size of the regional
domain.

This case requires the assumption that the observed frequencies
in a relatively small domain provide useful constraints for the slope
and intercept (Eq. (3.1.11)2) of the cumulative frequency relation for
displacement in a larger domain. It does not account, however, for
the observed fall-off from the log-linear systematics that actually
characterizes the data for the very largest faults, and using this
approach therefore has the potential to overestimate the frequency
of the largest faults, with the result that the strain calculations
could be unreliable. Marrett (1996) discusses an approach for
dealing with the non-linearity at the large fault end of the
spectrum.

5. Discussion

The analysis presented here pertains to the situation in which
the strains due to faulting in a body of rock are small. This
approximation is the basis for the analysis by Kostrov (1974) that
leads to Eq. (2.1.1). The restriction to small strains does not imply
that displacement on the faults must be small, however. Even
a large displacement on a fault accommodates only a small strain if
it is averaged over a volume of rock V that is large relative to the
geometric momentM0, which is the product of the area of the fault
and the displacement on the fault (Eq. (2.1.2)). This is obvious from
Eq. (2.1.1), which shows that the strain depends on the ratio M0=V .
We have also assumed that block rotation has a negligible effect on
the analysis. Twiss and coworkers have used continuummicropolar
theory to account for the effects of block rotation on the slip
directions on faults (Twiss et al., 1991, 1993; Twiss, 2009). Their
analysis shows that block rotations can affect the slip direction
pattern for a set of faults with a diverse distribution of orientations,
and thus can affect the strain inferred from such faults. We have not
incorporated these rotational effects in this analysis.
Small strains are not necessarily appropriate in all situations.
Analysis of the case for finite strainwould require that we abandon
Eqs. (2.1.1) and (2.1.11), which underlie our entire analysis, and that
we formulate the problem in terms of the inverse finite strain, for
which the reference length of a deformed line is the deformed
length. Finite strains can also give rise to finite block rotations,
which change the slip vectors on faults as they rotate (see Fig. 6 in
Twiss et al., 1991). Generalization to include finite strain and rota-
tion would add substantially to the complication of the analysis,
and we have not ventured into these waters.

Eqs. (4.1.40)e(4.1.42) may not in fact be the best way to esti-
mate the total extension or shear strain in a volume, because they
ignore the commonly large deviations from a power-law distri-
bution at the high ends of the length or displacement vs cumu-
lative frequency distributions (Fig. 3B; in the companion paper,
Part II, see also Figs. II:2 and II:4). The deviation at the lower limit
of length or displacement contributes negligibly to the cumulative
strain and thus can be ignored. But the deviation from the power-
law at the upper end of the displacement distribution would result
in Eqs. (4.1.40)e(4.1.42) providing incorrect estimates of the
extension or shear strain components in a volume. A better esti-
mate can be found (Marrett and Allmendinger, 1991, 1992;
Marrett, 1996) by numerically summing the displacements for
the largest faults, and then using Eqs. (4.1.40)e(4.1.42) with d(z,v)

(max)

equal to the largest of the unsummed displacements to estimate
the contribution from all the smaller faults. This technique must
also be used if the sampling volume includes faults whose
dimensions exceed the limits imposed by the dimensions of the
volume itself, as defined by Eqs. (3.4.2) and (3.4.3). In this case,
only the strain contributed by faults smaller than this limiting size
can be estimated with Eqs. (4.1.40)e(4.1.42); the effect of larger
faults must be added individually.

The sampling in one- or two-dimensional domains in general
only places constraints on the strain of the three-dimensional
volume (Eqs. (4.2.2), (4.3.2), and (4.3.4)). This result is in part
because the volume can always contain a larger fault than is
present in any given lower-dimensional sampling domain, and in
part because the scaling of the contribution of individual fault-
displacements to the strain is different for domains having
different dimensionality. If, however, the sampling in lower-
dimensional domains includes the largest fault in the volume, then
the equalities of Eqs. (4.2.2) and (4.3.2) apply, and the extensional
and shear strains of the volume are determined exactly from the
extensional and shear strains of a two-dimensional domain
(Eq. (4.2.2)) and from the extensional strain of a one-dimensional
domain (Eq. (4.3.2)). The equality does not apply, however, for
the shear strain determined from a one-dimensional domain
(Eq. (4.3.4)), so in this case, only a lower bound is determined for
the shear strain of the volume.

This approach of using scaling systematics is of major impor-
tance for approximating not only the strain, but also other impor-
tant aggregate characteristics of fractured rock (Marrett, 1996).
Thus the scale invariance of faults and fractures and their charac-
teristics, in principle permits the estimation of the aggregate
properties of the rock. An accurate estimation of these properties,
however, requires a knowledge of the parameters that define the
power-law distribution of these characteristics, and a theory for
how to use that distribution to calculate the aggregate properties.

6. Summary

The overall problemwe address in this paper is how to infer the
extension and shear strain in a volume of the brittle crust from
observation of fault-displacements or fault-lengths on an incom-
plete set of faults in a fault system. We encounter two main
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problems: The first is how to account for all the faults when any
survey of faults in a domain must inevitably be incomplete, due to
incomplete exposure and insufficient time for an exhaustive survey.
The second is the impossibility of thoroughly sampling a three-
dimensional volume of rock because physical access is limited to
outcrop on an essentially two-dimensional surface, or to essentially
one-dimensional traverses, tunnels, or drill core, and because
seismic surveying provides limited resolution. Thus, we need to
compensate for incomplete sampling of fault populations, and we
need to determine how to infer the strain of a three-dimensional
domain from observation of lower-dimensional domains.

The incomplete sampling can be accounted for by using
empirical power-laws that describe both the relationship between
fault-length and fault-displacement, and the individual cumulative
frequency distributions for fault-length and fault-displacement. To
that end, we develop the equations for the frequency distributions
of fault-displacement and fault-length as they pertain to sampling
in three-, two-, and one-dimensional domains, and we derive the
relations among these different distributions.

We then derive equations that apply the fault population
systematics to the problem of estimating the continuum extension
and shear strain in domains of three, two, and one dimensions. The
equations are different for domains having a different number of
dimensions, and we derive the relationships among the equations
for these different dimensionalities. These relations allow us to
calculate the total extension or shear strain within the sampled
domain knowing only the parameters defining the population
systematics and the magnitude of displacement, or the length, of
the largest fault in the domain.

We show how the strains inferred from sampling in two- and
one-dimensional domains are related to those for the three-
dimensional volume. In general, the sampling in lower-dimen-
sional domains allows us to calculate a lower bound for the
volumetric strains, which is expressed as a well-defined fraction of
the measured strains. Except for the one-dimensional estimate of
the shear strain, the lower bound defines exactly the volumetric
strain if the largest fault in the volume is also the largest fault in
the sampled domain.

We derive constraints on the size of the domain that we must
use, relative to the size of the largest fault in the analysis, in order to
be able to apply the equations for total strain that are based on fault
systematics (Eqs. (3.4.2) and (3.4.3)). These limits define the
minimum size of the volume that must be included in an analysis of
this type for a given maximum-sized fault. Alternatively, the limits
prescribe the largest fault that can be included in an analysis of
strain that relies on fault systematics for a volume of crust of a given
size. Larger faults that cut the domain must be included explicitly
by adding their contributions to the strain individually.
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